From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
38.33 % |
78.41 % |
46.22 % |
85.23 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
47.43 % |
99.58 % |
64.25 % |
16622 |
70 |
18425 |
0.63 % |
17493 |
458 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
18.00 % |
45.85 % |
36.15 % |
2716 |
3225 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.