From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
85.63 % |
85.17 % |
85.73 % |
88.15 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
87.77 % |
99.24 % |
93.16 % |
33408 |
255 |
4654 |
2.29 % |
36461 |
836 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
66.15 % |
27.85 % |
6.00 % |
34 |
399 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.