From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
90.80 % |
86.75 % |
91.30 % |
89.45 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
96.06 % |
96.36 % |
96.21 % |
38008 |
1434 |
1558 |
12.89 % |
44757 |
1390 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
87.69 % |
10.77 % |
1.54 % |
173 |
246 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.