From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
76.59 % |
82.10 % |
76.97 % |
86.36 % |
PEDESTRIAN |
47.22 % |
70.36 % |
47.59 % |
90.96 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
80.26 % |
98.00 % |
88.25 % |
29747 |
606 |
7315 |
5.45 % |
32774 |
831 |
PEDESTRIAN |
59.01 % |
84.12 % |
69.36 % |
13734 |
2592 |
9540 |
23.30 % |
18951 |
446 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
52.15 % |
34.46 % |
13.38 % |
130 |
387 |
PEDESTRIAN |
24.05 % |
48.11 % |
27.84 % |
87 |
825 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.