From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
56.03 % |
77.52 % |
56.03 % |
83.15 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
58.52 % |
97.81 % |
73.23 % |
20682 |
463 |
14659 |
4.16 % |
23792 |
1653 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
23.23 % |
49.54 % |
27.23 % |
0 |
699 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.