From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
87.13 % |
85.17 % |
87.19 % |
88.04 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
90.07 % |
98.34 % |
94.02 % |
34673 |
584 |
3823 |
5.25 % |
39374 |
768 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
75.85 % |
14.77 % |
9.38 % |
19 |
533 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.