From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
54.22 % |
77.57 % |
54.22 % |
82.74 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
60.80 % |
92.87 % |
73.49 % |
21822 |
1676 |
14067 |
15.07 % |
30573 |
2460 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
25.69 % |
45.23 % |
29.08 % |
1 |
557 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.