From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
78.15 % |
79.46 % |
78.24 % |
83.87 % |
PEDESTRIAN |
46.62 % |
71.45 % |
46.89 % |
92.02 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
83.22 % |
96.78 % |
89.49 % |
31854 |
1061 |
6421 |
9.54 % |
35742 |
775 |
PEDESTRIAN |
55.25 % |
87.33 % |
67.68 % |
12874 |
1867 |
10427 |
16.78 % |
16525 |
299 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
57.23 % |
29.54 % |
13.23 % |
31 |
207 |
PEDESTRIAN |
26.12 % |
39.86 % |
34.02 % |
63 |
666 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.