From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
88.17 % |
86.27 % |
88.25 % |
88.86 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
94.01 % |
95.42 % |
94.71 % |
36168 |
1737 |
2303 |
15.61 % |
44560 |
1126 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
80.31 % |
17.08 % |
2.62 % |
30 |
327 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.