From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
91.92 % |
85.83 % |
92.32 % |
88.47 % |
PEDESTRIAN |
65.76 % |
74.67 % |
66.29 % |
91.92 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
94.27 % |
98.96 % |
96.56 % |
37033 |
389 |
2252 |
3.50 % |
46490 |
1773 |
PEDESTRIAN |
74.63 % |
90.37 % |
81.75 % |
17474 |
1862 |
5941 |
16.74 % |
23170 |
922 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
86.77 % |
10.92 % |
2.31 % |
138 |
345 |
PEDESTRIAN |
49.14 % |
35.74 % |
15.12 % |
124 |
792 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.