From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
90.64 % |
85.71 % |
91.30 % |
88.41 % |
PEDESTRIAN |
64.01 % |
74.73 % |
64.71 % |
92.21 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
93.37 % |
98.93 % |
96.07 % |
36572 |
396 |
2597 |
3.56 % |
46032 |
904 |
PEDESTRIAN |
72.56 % |
90.61 % |
80.59 % |
16956 |
1758 |
6412 |
15.80 % |
22728 |
343 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
81.23 % |
15.85 % |
2.92 % |
225 |
471 |
PEDESTRIAN |
44.67 % |
35.74 % |
19.59 % |
161 |
813 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.