From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
89.44 % |
85.05 % |
89.78 % |
87.81 % |
PEDESTRIAN |
55.34 % |
74.02 % |
55.75 % |
92.01 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
93.20 % |
97.73 % |
95.41 % |
36562 |
849 |
2666 |
7.63 % |
45465 |
1351 |
PEDESTRIAN |
65.61 % |
87.48 % |
74.98 % |
15351 |
2196 |
8047 |
19.74 % |
22588 |
806 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
82.31 % |
15.38 % |
2.31 % |
116 |
334 |
PEDESTRIAN |
34.71 % |
45.36 % |
19.93 % |
95 |
751 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.