From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
75.20 % |
80.02 % |
75.51 % |
84.45 % |
PEDESTRIAN |
39.26 % |
71.14 % |
40.05 % |
92.43 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
80.99 % |
96.45 % |
88.04 % |
31011 |
1143 |
7280 |
10.28 % |
34602 |
978 |
PEDESTRIAN |
50.54 % |
83.33 % |
62.92 % |
11773 |
2355 |
11523 |
21.17 % |
15964 |
492 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
50.00 % |
36.46 % |
13.54 % |
105 |
351 |
PEDESTRIAN |
21.31 % |
36.77 % |
41.92 % |
184 |
863 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.