From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
91.04 % |
86.56 % |
91.11 % |
89.34 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
95.70 % |
96.55 % |
96.12 % |
37865 |
1355 |
1702 |
12.18 % |
44785 |
657 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
83.54 % |
6.31 % |
10.15 % |
25 |
71 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.