From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
64.98 % |
81.69 % |
65.06 % |
86.72 % |
PEDESTRIAN |
30.39 % |
77.20 % |
30.54 % |
95.01 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
70.31 % |
96.89 % |
81.48 % |
26441 |
850 |
11167 |
7.64 % |
28446 |
648 |
PEDESTRIAN |
33.90 % |
91.65 % |
49.50 % |
7880 |
718 |
15362 |
6.45 % |
8853 |
185 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
28.92 % |
42.77 % |
28.31 % |
28 |
339 |
PEDESTRIAN |
11.68 % |
27.84 % |
60.48 % |
35 |
354 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.