From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
PEDESTRIAN |
39.14 % |
64.22 % |
40.18 % |
88.22 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
PEDESTRIAN |
62.82 % |
74.04 % |
67.97 % |
14694 |
5151 |
8698 |
46.31 % |
24779 |
1053 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
PEDESTRIAN |
26.12 % |
51.89 % |
21.99 % |
241 |
1467 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.