Method

SOMT [SOMT]


Submitted on 14 Jul. 2025 14:32 by
wang naibang (Tsinghua university)

Running time:1 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
.
Parameters:
Latex Bibtex:

Detailed Results

From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2]. The tables below show all of these metrics.


Benchmark MOTA MOTP MODA MODP
CAR 90.95 % 85.77 % 91.44 % 88.42 %
PEDESTRIAN 64.46 % 74.74 % 65.40 % 92.06 %

Benchmark recall precision F1 TP FP FN FAR #objects #trajectories
CAR 93.60 % 98.83 % 96.14 % 36695 434 2511 3.90 % 45888 1398
PEDESTRIAN 73.18 % 90.79 % 81.04 % 17116 1736 6274 15.61 % 22548 626

Benchmark MT PT ML IDS FRAG
CAR 84.77 % 12.46 % 2.77 % 169 394
PEDESTRIAN 45.70 % 38.83 % 15.46 % 218 900

This table as LaTeX


[1] K. Bernardin, R. Stiefelhagen: Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia: Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.


eXTReMe Tracker