3D Object Detection Evaluation 2017


The 3D object detection benchmark consists of 7481 training images and 7518 test images as well as the corresponding point clouds, comprising a total of 80.256 labeled objects. For evaluation, we compute precision-recall curves. To rank the methods we compute average precision. We require that all methods use the same parameter set for all test pairs. Our development kit provides details about the data format as well as MATLAB / C++ utility functions for reading and writing the label files.

We evaluate 3D object detection performance using the PASCAL criteria also used for 2D object detection. Far objects are thus filtered based on their bounding box height in the image plane. As only objects also appearing on the image plane are labeled, objects in don't car areas do not count as false positives. We note that the evaluation does not take care of ignoring detections that are not visible on the image plane — these detections might give rise to false positives. For cars we require an 3D bounding box overlap of 70%, while for pedestrians and cyclists we require a 3D bounding box overlap of 50%. Difficulties are defined as follows:

  • Easy: Min. bounding box height: 40 Px, Max. occlusion level: Fully visible, Max. truncation: 15 %
  • Moderate: Min. bounding box height: 25 Px, Max. occlusion level: Partly occluded, Max. truncation: 30 %
  • Hard: Min. bounding box height: 25 Px, Max. occlusion level: Difficult to see, Max. truncation: 50 %

All methods are ranked based on the moderately difficult results.

Note 2: On 08.10.2019, we have followed the suggestions of the Mapillary team in their paper Disentangling Monocular 3D Object Detection and use 40 recall positions instead of the 11 recall positions proposed in the original Pascal VOC benchmark. This results in a more fair comparison of the results, please check their paper. The last leaderboards right before this change can be found here: Object Detection Evaluation, 3D Object Detection Evaluation, Bird's Eye View Evaluation.
Important Policy Update: As more and more non-published work and re-implementations of existing work is submitted to KITTI, we have established a new policy: from now on, only submissions with significant novelty that are leading to a peer-reviewed paper in a conference or journal are allowed. Minor modifications of existing algorithms or student research projects are not allowed. Such work must be evaluated on a split of the training set. To ensure that our policy is adopted, new users must detail their status, describe their work and specify the targeted venue during registration. Furthermore, we will regularly delete all entries that are 6 months old but are still anonymous or do not have a paper associated with them. For conferences, 6 month is enough to determine if a paper has been accepted and to add the bibliography information. For longer review cycles, you need to resubmit your results.
Additional information used by the methods
  • Stereo: Method uses left and right (stereo) images
  • Flow: Method uses optical flow (2 temporally adjacent images)
  • Multiview: Method uses more than 2 temporally adjacent images
  • Laser Points: Method uses point clouds from Velodyne laser scanner
  • Additional training data: Use of additional data sources for training (see details)

Car


Method Setting Code Moderate Easy Hard Runtime Environment
1 VirConv-S code 87.20 % 92.48 % 82.45 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
2 UDeerPEP code 86.72 % 91.77 % 82.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Z. Dong, H. Ji, X. Huang, W. Zhang, X. Zhan and J. Chen: PeP: a Point enhanced Painting method for unified point cloud tasks. 2023.
3 VirConv-T code 86.25 % 92.54 % 81.24 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, S. Shi and C. Wang: Virtual Sparse Convolution for Multimodal 3D Object Detection. CVPR 2023.
4 ViKIENet-R 86.04 % 91.20 % 81.18 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Z. Yu, B. Qiu and A. Khong: ViKIENet: Towards Efficient 3D Object Detection with Virtual Key Instance Enhanced Network. CVPR 2025.
5 BFT3D 85.65 % 92.32 % 78.88 % 0.15 s 1 core @ 2.5 Ghz (C/C++)
6 MPCF code 85.50 % 92.46 % 80.69 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
P. Gao and P. Zhang: MPCF: Multi-Phase Consolidated Fusion for Multi-Modal 3D Object Detection with Pseudo Point Cloud. 2024.
7 TSSTDet 85.47 % 91.84 % 80.65 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang, D. Bui and M. Yoo: TSSTDet: Transformation-Based 3-D Object Detection via a Spatial Shape Transformer. IEEE Sensors Journal 2024.
8 LDRFusion 85.47 % 91.92 % 80.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
9 3ONet 85.47 % 92.03 % 78.64 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
10 mm3d 85.45 % 92.09 % 80.68 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
11 mat3D 85.36 % 92.01 % 80.58 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
12 WWW 85.34 % 92.25 % 80.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
13 TED code 85.28 % 91.61 % 80.68 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
14 SQD++ 85.14 % 92.12 % 80.14 % 0.08 s GPU @ >3.5 Ghz (Python)
15 None 85.14 % 92.12 % 80.14 % 0.05 1 core @ 2.5 Ghz (C/C++)
16 LoGoNet code 85.06 % 91.80 % 80.74 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
17 TRTConv-L 85.04 % 91.90 % 80.38 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
18 ViKIENet 84.96 % 91.79 % 80.20 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Yu, B. Qiu and A. Khong: ViKIENet: Towards Efficient 3D Object Detection with Virtual Key Instance Enhanced Network. CVPR 2025.
19 SCDA-Net 84.94 % 91.61 % 80.61 % - s 1 core @ 2.5 Ghz (C/C++)
20 LVP 84.92 % 91.37 % 80.07 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, G. Cai, Z. Song, Z. Liu, B. Zeng, J. Li and Z. Wang: LVP: Leverage Virtual Points in Multi- modal Early Fusion for 3D Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2024.
21 3D-AWARE 84.85 % 91.38 % 80.39 % 0.1 s 1 core @ 2.5 Ghz (Python)
22 P3GMF 84.82 % 90.99 % 81.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
23 TRTConv-T 84.80 % 91.74 % 80.22 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
24 SFD code 84.76 % 91.73 % 77.92 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Wu, L. Peng, H. Yang, L. Xie, C. Huang, C. Deng, H. Liu and D. Cai: Sparse Fuse Dense: Towards High Quality 3D Detection with Depth Completion. CVPR 2022.
25 RM3D 84.72 % 90.86 % 81.17 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
26 ACFNet 84.67 % 90.80 % 80.14 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
27 MuStD 84.36 % 91.03 % 80.78 % 67 ms >8 cores @ 2.5 Ghz (Python)
28 3D HANet code 84.18 % 90.79 % 77.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, Y. Chen, G. Cai, G. Chen, D. Xie, J. Su and Z. Wang: 3D HANet: A Flexible 3D Heatmap Auxiliary Network for Object Detection. IEEE Transactions on Geoscience and Remote Sensing 2023.
29 CasA++ code 84.04 % 90.68 % 79.69 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
30 L-AUG 83.84 % 90.53 % 79.10 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
31 LumiNet code 83.32 % 91.76 % 78.29 % 0.1 s 1 core @ 2.5 Ghz (Python)
32 GraR-VoI code 83.27 % 91.89 % 77.78 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
33 GLENet-VR code 83.23 % 91.67 % 78.43 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, Z. Zhu, J. Hou and Y. Yuan: GLENet: Boosting 3D object detectors with generative label uncertainty estimation. International Journal of Computer Vision 2023.
Y. Zhang, J. Hou and Y. Yuan: A Comprehensive Study of the Robustness for LiDAR-based 3D Object Detectors against Adversarial Attacks. International Journal of Computer Vision 2023.
34 VPFNet code 83.21 % 91.02 % 78.20 % 0.06 s 2 cores @ 2.5 Ghz (Python)
H. Zhu, J. Deng, Y. Zhang, J. Ji, Q. Mao, H. Li and Y. Zhang: VPFNet: Improving 3D Object Detection with Virtual Point based LiDAR and Stereo Data Fusion. IEEE Transactions on Multimedia 2022.
35 GraR-Po code 83.18 % 91.79 % 77.98 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
36 CasA code 83.06 % 91.58 % 80.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
37 UPIDet code 82.97 % 89.13 % 80.05 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
38 MLF-DET 82.89 % 91.18 % 77.89 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
39 BtcDet
This method makes use of Velodyne laser scans.
code 82.86 % 90.64 % 78.09 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
40 R2Pfusion-Det 82.83 % 89.20 % 80.02 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
41 ImagePG 82.78 % 91.31 % 79.87 % 1 s 1 core @ 2.5 Ghz (C/C++)
42 GraR-Vo code 82.77 % 91.29 % 77.20 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
43 SPG_mini
This method makes use of Velodyne laser scans.
code 82.66 % 90.64 % 77.91 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
44 OcTr 82.64 % 90.88 % 77.77 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
C. Zhou, Y. Zhang, J. Chen and D. Huang: OcTr: Octree-based Transformer for 3D Object Detection. CVPR 2023.
45 PA3DNet 82.57 % 90.49 % 77.88 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
M. Wang, L. Zhao and Y. Yue: PA3DNet: 3-D Vehicle Detection with Pseudo Shape Segmentation and Adaptive Camera- LiDAR Fusion. IEEE Transactions on Industrial Informatics 2023.
46 SE-SSD
This method makes use of Velodyne laser scans.
code 82.54 % 91.49 % 77.15 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, L. Jiang and C. Fu: SE-SSD: Self-Ensembling Single-Stage Object Detector From Point Cloud. CVPR 2021.
47 MPC3DNet 82.52 % 92.19 % 77.55 % 0.05 s GPU @ 1.5 Ghz (Python)
48 DVF-V 82.45 % 89.40 % 77.56 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
49 GraR-Pi code 82.42 % 90.94 % 77.00 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Yang, Z. Liu, X. Wu, W. Wang, W. Qian, X. He and D. Cai: Graph R-CNN: Towards Accurate 3D Object Detection with Semantic-Decorated Local Graph. ECCV 2022.
50 DVF-PV 82.40 % 90.99 % 77.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
A. Mahmoud, J. Hu and S. Waslander: Dense Voxel Fusion for 3D Object Detection. WACV 2023.
51 3D Dual-Fusion code 82.40 % 91.01 % 79.39 % 0.1 s 1 core @ 2.5 Ghz (Python)
Y. Kim, K. Park, M. Kim, D. Kum and J. Choi: 3D Dual-Fusion: Dual-Domain Dual-Query Camera-LiDAR Fusion for 3D Object Detection. arXiv preprint arXiv:2211.13529 2022.
52 DPFusion code 82.35 % 90.98 % 77.26 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Y. Hu, J. Wang and J. Yan: Enhancing LiDAR Point Features with Foundation Model Priors for 3D Object Detection. ITSC 2025.
53 RDIoU code 82.30 % 90.65 % 77.26 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, N. Zhao, B. Deng, J. Huang, X. Hua, M. Zhao and G. Lee: Rethinking IoU-based Optimization for Single- stage 3D Object Detection. ECCV 2022.
54 PVT-SSD 82.29 % 90.65 % 76.85 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, W. Wang, M. Chen, B. Lin, T. He, H. Chen, X. He and W. Ouyang: PVT-SSD: Single-Stage 3D Object Detector with Point-Voxel Transformer. CVPR 2023.
55 Focals Conv code 82.28 % 90.55 % 77.59 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, Y. Li, X. Zhang, J. Sun and J. Jia: Focal Sparse Convolutional Networks for 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
56 CLOCs code 82.28 % 89.16 % 77.23 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
57 GraphAlign(ICCV2023) code 82.23 % 90.90 % 79.67 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
58 SpaA 82.20 % 90.40 % 77.41 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
59 SASA
This method makes use of Velodyne laser scans.
code 82.16 % 88.76 % 77.16 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
C. Chen, Z. Chen, J. Zhang and D. Tao: SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object Detection. arXiv preprint arXiv:2201.01976 2022.
60 PG-RCNN code 82.13 % 89.38 % 77.33 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
61 SPG
This method makes use of Velodyne laser scans.
code 82.13 % 90.50 % 78.90 % 0.09 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
62 RobusTor3D 82.12 % 90.78 % 79.36 % ... s 1 core @ 2.5 Ghz (C/C++)
63 VoTr-TSD code 82.09 % 89.90 % 79.14 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, Y. Xue, M. Niu, H. Bai, J. Feng, X. Liang, H. Xu and C. Xu: Voxel Transformer for 3D Object Detection. ICCV 2021.
64 Pyramid R-CNN 82.08 % 88.39 % 77.49 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
J. Mao, M. Niu, H. Bai, X. Liang, H. Xu and C. Xu: Pyramid R-CNN: Towards Better Performance and Adaptability for 3D Object Detection. ICCV 2021.
65 VoxSeT code 82.06 % 88.53 % 77.46 % 33 ms 1 core @ 2.5 Ghz (C/C++)
C. He, R. Li, S. Li and L. Zhang: Voxel Set Transformer: A Set-to-Set Approach to 3D Object Detection from Point Clouds. CVPR 2022.
66 BFT3D_easy 82.03 % 92.75 % 74.92 % 0.18 s 1 core @ 2.5 Ghz (C/C++)
67 EQ-PVRCNN code 82.01 % 90.13 % 77.53 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
68 EPNet++ 81.96 % 91.37 % 76.71 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
69 USVLab BSAODet code 81.95 % 88.66 % 77.40 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
70 HMFI code 81.93 % 88.90 % 77.30 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
71 CEF code 81.93 % 88.19 % 77.14 % 0.03 s 1 core @ 2.5 Ghz (Python)
72 RagNet3D code 81.91 % 88.74 % 77.45 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Chen, Y. Han, Z. Yan, J. Qian, J. Li and J. Yang: Ragnet3d: Learning Distinguishable Representation for Pooled Grids in 3d Object Detection. Available at SSRN 4979473 .
73 PDV code 81.86 % 90.43 % 77.36 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
74 SQD code 81.82 % 91.58 % 79.07 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Z. Hou, W. Huang, Y. Hu, J. Wang and J. Yan: Sparse Query Dense: Enhancing 3D Object Detection with Pseudo Points. ACM MM Oral 2024.
75 CityBrainLab-CT3D code 81.77 % 87.83 % 77.16 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Sheng, S. Cai, Y. Liu, B. Deng, J. Huang, X. Hua and M. Zhao: Improving 3D Object Detection with Channel- wise Transformer. ICCV 2021.
76 M3DeTR code 81.73 % 90.28 % 76.96 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
77 SIENet code 81.71 % 88.22 % 77.22 % 0.08 s 1 core @ 2.5 Ghz (Python)
Z. Li, Y. Yao, Z. Quan, W. Yang and J. Xie: SIENet: Spatial Information Enhancement Network for 3D Object Detection from Point Cloud. 2021.
78 FIRM-Net_SCF+ 81.67 % 88.24 % 77.00 % 0.07 s 1 core @ 2.5 Ghz (Python)
79 FIRM-Net-SCF 81.66 % 88.25 % 76.99 % 0.07 s 1 core @ 2.5 Ghz (Python)
80 SFA_IGCL_Focalsconv* code 81.63 % 90.59 % 77.28 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
81 Voxel R-CNN code 81.62 % 90.90 % 77.06 % 0.04 s GPU @ 3.0 Ghz (C/C++)
J. Deng, S. Shi, P. Li, W. Zhou, Y. Zhang and H. Li: Voxel R-CNN: Towards High Performance Voxel-based 3D Object Detection . AAAI 2021.
82 BADet code 81.61 % 89.28 % 76.58 % 0.14 s 1 core @ 2.5 Ghz (C/C++)
R. Qian, X. Lai and X. Li: BADet: Boundary-Aware 3D Object Detection from Point Clouds. Pattern Recognition 2022.
83 FromVoxelToPoint code 81.58 % 88.53 % 77.37 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
84 H^23D R-CNN code 81.55 % 90.43 % 77.22 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
85 FARP-Net code 81.53 % 88.36 % 78.98 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
T. Xie, L. Wang, K. Wang, R. Li, X. Zhang, H. Zhang, L. Yang, H. Liu and J. Li: FARP-Net: Local-Global Feature Aggregation and Relation-Aware Proposals for 3D Object Detection. IEEE Transactions on Multimedia 2023.
86 FocalsConv* 81.48 % 90.48 % 77.18 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
87 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 81.46 % 88.25 % 76.96 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
88 P2V-RCNN 81.45 % 88.34 % 77.20 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
89 New_VLGCL code 81.45 % 90.48 % 77.14 % 0.4 s 1 core @ 2.5 Ghz (Python)
90 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 81.43 % 90.25 % 76.82 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
91 ... code 81.39 % 90.57 % 76.96 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
92 2025AAAI-SSLfusion code 81.36 % 90.23 % 76.56 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
93 XView 81.35 % 89.21 % 76.87 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
94 RangeRCNN
This method makes use of Velodyne laser scans.
81.33 % 88.47 % 77.09 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, M. Zhang, Z. Zhang, X. Zhao and S. Pu: RangeRCNN: Towards Fast and Accurate 3D Object Detection with Range Image Representation. arXiv preprint arXiv:2009.00206 2020.
95 CAT-Det 81.32 % 89.87 % 76.68 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
96 PASS-PV-RCNN-Plus 81.28 % 87.65 % 76.79 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
97 CGML 81.22 % 90.32 % 76.97 % 0.33 s 1 core @ 2.5 Ghz (C/C++)
98 VLGCL_NoText code 81.21 % 90.35 % 77.00 % 0.3 s 1 core @ 2.5 Ghz (Python)
99 Voxel RCNN-Focal* code 81.14 % 87.96 % 77.07 % 0.2 s 1 core @ 2.5 Ghz (Python)
100 VPFNet code 80.97 % 88.51 % 76.74 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
101 Sem-Aug
This method makes use of Velodyne laser scans.
80.77 % 89.41 % 75.90 % 0.1 s GPU @ 2.5 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
102 StructuralIF 80.69 % 87.15 % 76.26 % 0.02 s 8 cores @ 2.5 Ghz (Python)
J. Pei An: Deep structural information fusion for 3D object detection on LiDAR-camera system. Accepted in CVIU 2021.
103 CLOCs_PVCas code 80.67 % 88.94 % 77.15 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection . 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
104 PointVit V2 80.54 % 89.81 % 74.96 % .006 s 1 core @ 2.5 Ghz (Python + C/C++)
105 SVGA-Net 80.47 % 87.33 % 75.91 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
106 SRDL 80.38 % 87.73 % 76.27 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
107 Fast-CLOCs 80.35 % 89.10 % 76.99 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
108 SPANet 80.34 % 91.05 % 74.89 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
Y. Ye: SPANet: Spatial and Part-Aware Aggregation Network for 3D Object Detection. Pacific Rim International Conference on Artificial Intelligence 2021.
109 IA-SSD (single) code 80.32 % 88.87 % 75.10 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
110 CIA-SSD
This method makes use of Velodyne laser scans.
code 80.28 % 89.59 % 72.87 % 0.03 s 1 core @ 2.5 Ghz (Python + C/C++)
W. Zheng, W. Tang, S. Chen, L. Jiang and C. Fu: CIA-SSD: Confident IoU-Aware Single-Stage Object Detector From Point Cloud. AAAI 2021.
111 CAIA_PRO code 80.16 % 88.52 % 75.05 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
112 IA-SSD (multi) code 80.13 % 88.34 % 75.04 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
113 EBM3DOD code 80.12 % 91.05 % 72.78 % 0.12 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
114 3D-CVF at SPA
This method makes use of Velodyne laser scans.
code 80.05 % 89.20 % 73.11 % 0.06 s 1 core @ 2.5 Ghz (C/C++)
J. Yoo, Y. Kim, J. Kim and J. Choi: 3D-CVF: Generating Joint Camera and LiDAR Features Using Cross-View Spatial Feature Fusion for 3D Object Detection. ECCV 2020.
115 PointVit V1 79.93 % 91.16 % 72.51 % .006 s 1 core @ 2.5 Ghz (Python + C/C++)
116 SIF 79.88 % 86.84 % 75.89 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
117 RangeIoUDet
This method makes use of Velodyne laser scans.
79.80 % 88.60 % 76.76 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
118 SA-SSD code 79.79 % 88.75 % 74.16 % 0.04 s 1 core @ 2.5 Ghz (Python)
C. He, H. Zeng, J. Huang, X. Hua and L. Zhang: Structure Aware Single-stage 3D Object Detection from Point Cloud. CVPR 2020.
119 STD code 79.71 % 87.95 % 75.09 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
120 MGAF-3DSSD code 79.68 % 88.16 % 72.39 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
121 Struc info fusion II 79.59 % 88.97 % 72.51 % 0.05 s GPU @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
122 3DSSD code 79.57 % 88.36 % 74.55 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
123 EBM3DOD baseline code 79.52 % 88.80 % 72.30 % 0.05 s 1 core @ 2.5 Ghz (Python)
F. Gustafsson, M. Danelljan and T. Schön: Accurate 3D Object Detection using Energy- Based Models. arXiv preprint arXiv:2012.04634 2020.
124 Struc info fusion I 79.49 % 88.70 % 74.25 % 0.05 s 1 core @ 2.5 Ghz (Python)
P. An, J. Liang, J. Ma, K. Yu and B. Fang: Struc info fusion. Submitted to CVIU 2021.
125 Point-GNN
This method makes use of Velodyne laser scans.
code 79.47 % 88.33 % 72.29 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
126 DFAF3D 79.37 % 88.59 % 72.21 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
127 SSL-PointGNN code 79.36 % 87.78 % 74.15 % 0.56 s GPU @ 1.5 Ghz (Python)
E. Erçelik, E. Yurtsever, M. Liu, Z. Yang, H. Zhang, P. Topçam, M. Listl, Y. Çaylı and A. Knoll: 3D Object Detection with a Self-supervised Lidar Scene Flow Backbone. arXiv preprint arXiv:2205.00705 2022.
128 EPNet code 79.28 % 89.81 % 74.59 % 0.1 s 1 core @ 2.5 Ghz (Python + C/C++)
T. Huang, Z. Liu, X. Chen and X. Bai: EPNet: Enhancing Point Features with Image Semantics for 3D Object Detection. ECCV 2020.
129 DVFENet 79.18 % 86.20 % 74.58 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
130 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 79.05 % 87.45 % 76.14 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
131 GD-MAE 79.03 % 88.14 % 73.55 % 0.07 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Yang, T. He, J. Liu, H. Chen, B. Wu, B. Lin, X. He and W. Ouyang: GD-MAE: Generative Decoder for MAE Pre- training on LiDAR Point Clouds. CVPR 2023.
132 3D IoU-Net 79.03 % 87.96 % 72.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, S. Luo, Z. Zhu, H. Dai, S. Krylov, Y. Ding and L. Shao: 3D IoU-Net: IoU Guided 3D Object Detector for Point Clouds. arXiv preprint arXiv:2004.04962 2020.
133 Voxel RCNN* code 79.01 % 87.56 % 76.16 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
134 SERCNN
This method makes use of Velodyne laser scans.
78.96 % 87.74 % 74.30 % 0.1 s 1 core @ 2.5 Ghz (Python)
D. Zhou, J. Fang, X. Song, L. Liu, J. Yin, Y. Dai, H. Li and R. Yang: Joint 3D Instance Segmentation and Object Detection for Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2020.
135 ACDet code 78.85 % 88.47 % 73.86 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
136 BVIFusion+ 78.82 % 87.38 % 75.89 % 0.09 s 1 core @ 2.5 Ghz (Python)
137 MVAF-Net code 78.71 % 87.87 % 75.48 % 0.06 s 1 core @ 2.5 Ghz (Python + C/C++)
G. Wang, B. Tian, Y. Zhang, L. Chen, D. Cao and J. Wu: Multi-View Adaptive Fusion Network for 3D Object Detection. arXiv preprint arXiv:2011.00652 2020.
138 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 78.49 % 87.81 % 73.51 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
139 CLOCs_SecCas 78.45 % 86.38 % 72.45 % 0.1 s 1 core @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: CLOCs: Camera-LiDAR Object Candidates Fusion for 3D Object Detection. 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2020.
140 Patches - EMP
This method makes use of Velodyne laser scans.
78.41 % 89.84 % 73.15 % 0.5 s GPU @ 2.5 Ghz (Python)
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
141 HotSpotNet 78.31 % 87.60 % 73.34 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
142 Sem-Aug-PointRCNN++ 78.06 % 86.69 % 73.85 % 0.1 s 8 cores @ 3.0 Ghz (Python)
L. Zhao, M. Wang and Y. Yue: Sem-Aug: Improving Camera-LiDAR Feature Fusion With Semantic Augmentation for 3D Vehicle Detection. IEEE Robotics and Automation Letters 2022.
143 CenterNet3D 77.90 % 86.20 % 73.03 % 0.04 s GPU @ 1.5 Ghz (Python)
G. Wang, B. Tian, Y. Ai, T. Xu, L. Chen and D. Cao: CenterNet3D:An Anchor free Object Detector for Autonomous Driving. 2020.
144 NoText_VLGCL code 77.90 % 88.99 % 73.48 % 0.2 s 1 core @ 2.5 Ghz (Python)
145 SVFMamba code 77.88 % 86.41 % 72.90 % N/A s 1 core @ 2.5 Ghz (C/C++)
146 HMNet 77.86 % 86.96 % 73.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
147 work6_new1 77.65 % 86.02 % 72.39 % 0.5 s GPU @ 2.5 Ghz (Python)
148 UberATG-MMF
This method makes use of Velodyne laser scans.
77.43 % 88.40 % 70.22 % 0.08 s GPU @ 2.5 Ghz (Python)
M. Liang*, B. Yang*, Y. Chen, R. Hu and R. Urtasun: Multi-Task Multi-Sensor Fusion for 3D Object Detection. CVPR 2019.
149 Associate-3Ddet code 77.40 % 85.99 % 70.53 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
L. Du, X. Ye, X. Tan, J. Feng, Z. Xu, E. Ding and S. Wen: Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud Object Detection. The IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
150 Fast Point R-CNN
This method makes use of Velodyne laser scans.
77.40 % 85.29 % 70.24 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, S. Liu, X. Shen and J. Jia: Fast Point R-CNN. Proceedings of the IEEE international conference on computer vision (ICCV) 2019.
151 RangeDet (Official) code 77.36 % 85.41 % 72.60 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
L. Fan, X. Xiong, F. Wang, N. Wang and Z. Zhang: RangeDet: In Defense of Range View for LiDAR-Based 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
152 CS3D 77.35 % 85.51 % 72.24 % 0.5 s 1 core @ 2.5 Ghz (Python)
153 MSFASA-3DNet 77.21 % 86.06 % 71.89 % 0.03 s GPU @ 2.5 Ghz (Python)
154 Patches
This method makes use of Velodyne laser scans.
77.20 % 88.67 % 71.82 % 0.15 s GPU @ 2.0 Ghz
J. Lehner, A. Mitterecker, T. Adler, M. Hofmarcher, B. Nessler and S. Hochreiter: Patch Refinement: Localized 3D Object Detection. arXiv preprint arXiv:1910.04093 2019.
155 dsvd+vx 77.20 % 84.74 % 73.94 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
156 AARMOD 76.90 % 87.70 % 69.62 % 0.1 s 1 core @ 2.5 Ghz (Python)
157 SeSame-point code 76.83 % 85.25 % 71.60 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
158 geo-pillars 76.78 % 85.97 % 71.77 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
159 HRI-VoxelFPN 76.70 % 85.64 % 69.44 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
H. Kuang, B. Wang, J. An, M. Zhang and Z. Zhang: Voxel-FPN:multi-scale voxel feature aggregation in 3D object detection from point clouds. sensors 2020.
160 SARPNET 76.64 % 85.63 % 71.31 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Ye, H. Chen, C. Zhang, X. Hao and Z. Zhang: SARPNET: Shape Attention Regional Proposal Network for LiDAR-based 3D Object Detection. Neurocomputing 2019.
161 3D IoU Loss
This method makes use of Velodyne laser scans.
76.50 % 86.16 % 71.39 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
D. Zhou, J. Fang, X. Song, C. Guan, J. Yin, Y. Dai and R. Yang: IoU Loss for 2D/3D Object Detection. International Conference on 3D Vision (3DV) 2019.
162 F-ConvNet
This method makes use of Velodyne laser scans.
code 76.39 % 87.36 % 66.69 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
163 SegVoxelNet 76.13 % 86.04 % 70.76 % 0.04 s 1 core @ 2.5 Ghz (Python)
H. Yi, S. Shi, M. Ding, J. Sun, K. Xu, H. Zhou, Z. Wang, S. Li and G. Wang: SegVoxelNet: Exploring Semantic Context and Depth-aware Features for 3D Vehicle Detection from Point Cloud. ICRA 2020.
164 S-AT GCN 76.04 % 83.20 % 71.17 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
165 T-SSD 76.00 % 86.97 % 69.11 % 0.04 1 core @ 2.0 Ghz (C/C++)
166 TANet code 75.94 % 84.39 % 68.82 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
167 PointRGCN 75.73 % 85.97 % 70.60 % 0.26 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
168 SA V1 75.64 % 82.79 % 71.00 % 0.5 s GPU @ 2.5 Ghz (Python)
169 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 75.64 % 86.96 % 70.70 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
170 Fade 3D code 75.57 % 85.85 % 70.47 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
W. Ye, Q. Xia, H. Wu, Z. Dong, R. Zhong, C. Wang and C. Wen: Fade3D: Fast and Deployable 3D Object Detection for Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems 2025.
171 DensePointPillars 75.46 % 84.60 % 68.43 % 0.03 s GPU @ 2.5 Ghz (Python)
172 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 75.43 % 86.10 % 68.88 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
173 R-GCN 75.26 % 83.42 % 68.73 % 0.16 s GPU @ 2.5 Ghz (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
174 PL++: PV-RCNN++
This method uses stereo information.
This method makes use of Velodyne laser scans.
75.23 % 86.60 % 70.34 % 0.342 s RTX 4060Ti (Python)
X. Gong, X. Huang, S. Chen and B. Zhang: Enhancing 3D Detection Accuracy in Autonomous Driving through Pseudo-LiDAR Augmentation and Downsampling. 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) 2024.
175 epBRM
This method makes use of Velodyne laser scans.
code 75.15 % 85.00 % 69.84 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
176 SeSame-voxel code 75.05 % 81.51 % 70.53 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
177 MAFF-Net(DAF-Pillar) 75.04 % 85.52 % 67.61 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Z. Zhang, Z. Liang, M. Zhang, X. Zhao, Y. Ming, T. Wenming and S. Pu: MAFF-Net: Filter False Positive for 3D Vehicle Detection with Multi-modal Adaptive Feature Fusion. arXiv preprint arXiv:2009.10945 2020.
178 PASS-PointPillar 74.85 % 84.72 % 69.05 % 1 s 1 core @ 2.5 Ghz (C/C++)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
179 Fade-kd 74.85 % 83.43 % 68.38 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
180 PI-RCNN 74.82 % 84.37 % 70.03 % 0.1 s 1 core @ 2.5 Ghz (Python)
L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai and X. He: PI-RCNN: An Efficient Multi-sensor 3D Object Detector with Point-based Attentive Cont-conv Fusion Module. AAAI 2020 : The Thirty-Fourth AAAI Conference on Artificial Intelligence 2020.
181 XPillars
This method makes use of Velodyne laser scans.
74.78 % 83.53 % 69.79 % 0.02 s GPU @ 2.5 Ghz (Python)
182 mmFUSION code 74.38 % 85.24 % 69.43 % 1s 1 core @ 2.5 Ghz (Python)
J. Ahmad and A. Del Bue: mmFUSION: Multimodal Fusion for 3D Objects Detection. arXiv preprint arXiv:2311.04058 2023.
183 PointPillars
This method makes use of Velodyne laser scans.
code 74.31 % 82.58 % 68.99 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
184 PCNet3D++ 74.19 % 84.00 % 69.65 % 0.5 s GPU @ 3.5 Ghz (Python)
185 HINTED code 74.13 % 84.00 % 67.03 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, W. Ye, H. Wu, S. Zhao, L. Xing, X. Huang, J. Deng, X. Li, C. Wen and C. Wang: HINTED: Hard Instance Enhanced Detector with Mixed-Density Feature Fusion for Sparsely- Supervised 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
186 ARPNET 74.04 % 84.69 % 68.64 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
187 Harmonic PointPillar code 73.96 % 82.26 % 69.21 % 0.01 s 1 core @ 2.5 Ghz (Python)
H. Zhang, J. Mekala, Z. Nain, J. Park and H. Jung: 3D Harmonic Loss: Towards Task-consistent and Time-friendly 3D Object Detection for V2X Orchestration. will submit to IEEE Transactions on Vehicular Technology 2022.
188 M3DNet 73.87 % 83.30 % 68.70 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
189 SeSame-pillar code 73.85 % 83.88 % 68.65 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
190 PC-CNN-V2
This method makes use of Velodyne laser scans.
73.79 % 85.57 % 65.65 % 0.5 s GPU @ 2.5 Ghz (Matlab + C/C++)
X. Du, M. Ang, S. Karaman and D. Rus: A General Pipeline for 3D Detection of Vehicles. 2018 IEEE International Conference on Robotics and Automation (ICRA) 2018.
191 C-GCN 73.62 % 83.49 % 67.01 % 0.147 s GPU @ V100 (Python)
J. Zarzar, S. Giancola and B. Ghanem: PointRGCN: Graph Convolution Networks for 3D Vehicles Detection Refinement. ArXiv 2019.
192 3DBN
This method makes use of Velodyne laser scans.
73.53 % 83.77 % 66.23 % 0.13s 1080Ti (Python+C/C++)
X. Li, J. Guivant, N. Kwok and Y. Xu: 3D Backbone Network for 3D Object Detection. CoRR 2019.
193 PointRGBNet 73.49 % 83.99 % 68.56 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
194 SCNet
This method makes use of Velodyne laser scans.
73.17 % 83.34 % 67.93 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
195 SeSame-pillar w/scor code 73.15 % 82.32 % 66.64 % N/A s 1 core @ 2.5 Ghz (C/C++)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
196 PointPillars_mmdet3d 73.13 % 83.51 % 68.02 % 0.03 s 1 core @ 2.5 Ghz (Python)
197 PFF3D
This method makes use of Velodyne laser scans.
code 72.93 % 81.11 % 67.24 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
198 DASS 72.31 % 81.85 % 65.99 % 0.09 s 1 core @ 2.0 Ghz (Python)
O. Unal, L. Van Gool and D. Dai: Improving Point Cloud Semantic Segmentation by Learning 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2021.
199 AVOD-FPN
This method makes use of Velodyne laser scans.
code 71.76 % 83.07 % 65.73 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
200 PointPainting
This method makes use of Velodyne laser scans.
71.70 % 82.11 % 67.08 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
201 WS3D
This method makes use of Velodyne laser scans.
70.59 % 80.99 % 64.23 % 0.1 s GPU @ 2.5 Ghz (Python)
Q. Meng, W. Wang, T. Zhou, J. Shen, L. Van Gool and D. Dai: Weakly Supervised 3D Object Detection from Lidar Point Cloud. 2020.
202 DSFNet 70.44 % 80.65 % 65.03 % 0.5 s GPU @ 2.5 Ghz (Python)
203 F-PointNet
This method makes use of Velodyne laser scans.
code 69.79 % 82.19 % 60.59 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
204 EOTL code 69.13 % 79.97 % 58.57 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
205 UberATG-ContFuse
This method makes use of Velodyne laser scans.
68.78 % 83.68 % 61.67 % 0.06 s GPU @ 2.5 Ghz (Python)
M. Liang, B. Yang, S. Wang and R. Urtasun: Deep Continuous Fusion for Multi-Sensor 3D Object Detection. ECCV 2018.
206 CPD++(unsupervised) code 67.90 % 84.20 % 62.53 % 0.1 s GPU @ >3.5 Ghz (Python)
207 MLOD
This method makes use of Velodyne laser scans.
code 67.76 % 77.24 % 62.05 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
208 DSGN++
This method uses stereo information.
code 67.37 % 83.21 % 59.91 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
209 DMF
This method uses stereo information.
67.33 % 77.55 % 62.44 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
210 AVOD
This method makes use of Velodyne laser scans.
code 66.47 % 76.39 % 60.23 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
211 StereoDistill 66.39 % 81.66 % 57.39 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
212 MMLAB LIGA-Stereo
This method uses stereo information.
code 64.66 % 81.39 % 57.22 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
213 BirdNet+
This method makes use of Velodyne laser scans.
code 64.04 % 76.15 % 59.79 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
214 MV3D
This method makes use of Velodyne laser scans.
63.63 % 74.97 % 54.00 % 0.36 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
215 SNVC
This method uses stereo information.
code 61.34 % 78.54 % 54.23 % 1 s GPU @ 1.0 Ghz (Python)
S. Li, Z. Liu, Z. Shen and K. Cheng: Stereo Neural Vernier Caliper. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
216 RCD 60.56 % 70.54 % 55.58 % 0.1 s GPU @ 2.5 Ghz (Python)
A. Bewley, P. Sun, T. Mensink, D. Anguelov and C. Sminchisescu: Range Conditioned Dilated Convolutions for Scale Invariant 3D Object Detection. Conference on Robot Learning (CoRL) 2020.
217 SeSame-point w/score code 56.92 % 74.30 % 48.14 % N/A s 1 core @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
218 A3DODWTDA
This method makes use of Velodyne laser scans.
code 56.82 % 62.84 % 48.12 % 0.08 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
219 PL++ (SDN+GDC)
This method uses stereo information.
This method makes use of Velodyne laser scans.
code 54.88 % 68.38 % 49.16 % 0.6 s GPU @ 2.5 Ghz (C/C++)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
220 MV3D (LIDAR)
This method makes use of Velodyne laser scans.
54.54 % 68.35 % 49.16 % 0.24 s GPU @ 2.5 Ghz (Python + C/C++)
X. Chen, H. Ma, J. Wan, B. Li and T. Xia: Multi-View 3D Object Detection Network for Autonomous Driving. CVPR 2017.
221 CDN
This method uses stereo information.
code 54.22 % 74.52 % 46.36 % 0.6 s GPU @ 2.5 Ghz (Python)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems (NeurIPS) 2020.
222 CG-Stereo
This method uses stereo information.
53.58 % 74.39 % 46.50 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
223 DSGN
This method uses stereo information.
code 52.18 % 73.50 % 45.14 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
224 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 51.85 % 70.14 % 50.03 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
225 Complexer-YOLO
This method makes use of Velodyne laser scans.
47.34 % 55.93 % 42.60 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
226 SeSame-voxel w/score code 47.14 % 61.57 % 41.06 % N/A s GPU @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
227 CPD(unsupervised) code 47.04 % 68.57 % 44.13 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
H. Wu, S. Zhao, X. Huang, C. Wen, X. Li and C. Wang: Commonsense Prototype for Outdoor Unsupervised 3D Object Detection. CVPR 2024.
228 ESGN
This method uses stereo information.
46.39 % 65.80 % 38.42 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
229 Disp R-CNN (velo)
This method uses stereo information.
code 45.78 % 68.21 % 37.73 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
230 CDN-PL++
This method uses stereo information.
44.86 % 64.31 % 38.11 % 0.4 s GPU @ 2.5 Ghz (C/C++)
D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao: Wasserstein Distances for Stereo Disparity Estimation. Advances in Neural Information Processing Systems 2020.
231 DDStereo
This method uses stereo information.
43.96 % 62.40 % 36.14 % 0.02 s GPU @ 2.5 Ghz (Python)
232 Disp R-CNN
This method uses stereo information.
code 43.27 % 67.02 % 36.43 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
233 Pseudo-LiDAR++
This method uses stereo information.
code 42.43 % 61.11 % 36.99 % 0.4 s GPU @ 2.5 Ghz (Python)
Y. You, Y. Wang, W. Chao, D. Garg, G. Pleiss, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR++: Accurate Depth for 3D Object Detection in Autonomous Driving. International Conference on Learning Representations 2020.
234 YOLOStereo3D
This method uses stereo information.
code 41.25 % 65.68 % 30.42 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
235 RT3D-GMP
This method uses stereo information.
38.76 % 45.79 % 30.00 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
236 ZoomNet
This method uses stereo information.
code 38.64 % 55.98 % 30.97 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
L. Z. Xu: ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2020.
237 OC Stereo
This method uses stereo information.
code 37.60 % 55.15 % 30.25 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
238 Pseudo-Lidar
This method uses stereo information.
code 34.05 % 54.53 % 28.25 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Wang, W. Chao, D. Garg, B. Hariharan, M. Campbell and K. Weinberger: Pseudo-LiDAR From Visual Depth Estimation: Bridging the Gap in 3D Object Detection for Autonomous Driving. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
239 Stereo CenterNet
This method uses stereo information.
31.30 % 49.94 % 25.62 % 0.04 s GPU @ 2.5 Ghz (Python)
Y. Shi, Y. Guo, Z. Mi and X. Li: Stereo CenterNet-based 3D object detection for autonomous driving. Neurocomputing 2022.
240 Stereo R-CNN
This method uses stereo information.
code 30.23 % 47.58 % 23.72 % 0.3 s GPU @ 2.5 Ghz (Python)
P. Li, X. Chen and S. Shen: Stereo R-CNN based 3D Object Detection for Autonomous Driving. CVPR 2019.
241 BirdNet
This method makes use of Velodyne laser scans.
27.26 % 40.99 % 25.32 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
242 DA3D+KM3D+v2-99 code 26.80 % 34.72 % 23.05 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
243 test_det 25.75 % 27.73 % 24.39 % -1 s 1 core @ 2.5 Ghz (C/C++)
244 CIE + DM3D 25.02 % 35.96 % 21.47 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Ananimities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
245 RT3DStereo
This method uses stereo information.
23.28 % 29.90 % 18.96 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
246 DA3D+KM3D code 22.08 % 30.83 % 19.20 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
247 MDD-M3D-X 21.20 % 30.76 % 18.76 % 0.01 s 1 core @ 2.5 Ghz (Python)
248 MonoDTF 21.19 % 32.02 % 18.80 % 0.1 s 1 core @ 2.5 Ghz (Python)
Anonymities: Revisiting Monocular 3D Object Detection from Scene-Level Depth Retargeting to Instance- Level Spatial Refinement. arXiv preprint arXiv:2412.19165 2024.
249 MonoCoP-Car 21.15 % 29.84 % 18.13 % 0.01 s GPU @ 2.5 Ghz (Python)
250 CIE 20.95 % 31.55 % 17.83 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
251 MonoMH code 20.88 % 29.12 % 17.93 % 0.04 s 1 core @ 2.5 Ghz (Python)
252 DA3D code 20.47 % 27.76 % 17.89 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
253 M3D 20.35 % 29.26 % 17.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
254 SSM3D 20.33 % 29.27 % 17.35 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
255 STLM3D 20.32 % 29.08 % 17.55 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
256 MonoCoP 19.89 % 28.80 % 17.65 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
257 MonoDLGD 19.87 % 29.11 % 17.74 % 0.04 s GPU @ 2.5 Ghz (Python)
258 M5_3D 19.84 % 30.43 % 17.43 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
259 MonoCLUE 19.70 % 27.94 % 16.69 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
260 AM 19.64 % 27.94 % 16.74 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
261 MonoHPE-Mask 19.59 % 27.07 % 17.36 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
262 MM3D 19.54 % 29.86 % 17.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
263 MonoLSPF 19.51 % 27.34 % 17.26 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
264 MonoHPE 19.50 % 27.33 % 17.22 % 0.04 s 1 core @ 2.5 Ghz (Python)
265 MonoGeo code 19.34 % 27.07 % 16.57 % 0.14 s GPU @ 2.5 Ghz (Python)
266 AMNet+DDAD15M code 19.26 % 26.26 % 17.05 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
267 MonoVQD 19.20 % 28.26 % 16.21 % 0.02 s 1 core @ 2.5 Ghz (Python)
268 MonoLSS 19.15 % 26.11 % 16.94 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
269 RT3D
This method makes use of Velodyne laser scans.
19.14 % 23.74 % 18.86 % 0.09 s GPU @ 1.8Ghz
Y. Zeng, Y. Hu, S. Liu, J. Ye, Y. Han, X. Li and N. Sun: RT3D: Real-Time 3-D Vehicle Detection in LiDAR Point Cloud for Autonomous Driving. IEEE Robotics and Automation Letters 2018.
270 MonoAFKD 19.06 % 26.07 % 16.85 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
271 H3 19.01 % 28.07 % 16.09 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
272 MonoGeo code 18.96 % 27.37 % 16.28 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
273 NeurOCS 18.94 % 29.89 % 15.90 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Min, B. Zhuang, S. Schulter, B. Liu, E. Dunn and M. Chandraker: NeurOCS: Neural NOCS Supervision for Monocular 3D Object Localization. CVPR 2023.
274 IDEAL-M3D 60% 18.87 % 27.06 % 16.73 % 0.04 s 1 core @ 2.5 Ghz (Python)
275 MonoLiG code 18.86 % 24.90 % 16.79 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
276 GATE3D code 18.85 % 26.07 % 16.76 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
277 MonoCLUE 18.77 % 26.30 % 16.10 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
278 MonoCLUE_all 18.70 % 26.59 % 15.99 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
279 CMKD code 18.69 % 28.55 % 16.77 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
280 DetAny3D code 18.67 % 26.89 % 15.48 % 0.58 s 1 core @ 2.5 Ghz (Python)
281 Mix-Teaching code 18.54 % 26.89 % 15.79 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
282 StereoFENet
This method uses stereo information.
18.41 % 29.14 % 14.20 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
283 AMNet code 18.36 % 26.09 % 15.86 % 0.03 s GPU @ 1.0 Ghz (Python)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
284 PS-SVDM 18.13 % 29.22 % 15.35 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
285 UniCuboid 18.12 % 26.80 % 15.42 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
286 MonoSample (DID-M3D) code 18.05 % 28.63 % 15.19 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
J. Qiao, B. Liu, J. Yang, B. Wang, S. Xiu, X. Du and X. Nie: MonoSample: Synthetic 3D Data Augmentation Method in Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2024.
287 MonoSC 18.03 % 24.57 % 15.80 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
288 LPCG-Monoflex code 17.80 % 25.56 % 15.38 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
289 PS-fld code 17.74 % 23.74 % 15.14 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
290 fdaa11 17.65 % 26.09 % 15.54 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
291 MonoSKD code 17.35 % 28.43 % 15.01 % 0.04 s 1 core @ 2.5 Ghz (Python)
S. Wang and J. Zheng: MonoSKD: General Distillation Framework for Monocular 3D Object Detection via Spearman Correlation Coefficient. ECAI 2023.
292 MonoDDE 17.14 % 24.93 % 15.10 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
293 MonoNeRD code 17.13 % 22.75 % 15.63 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
294 OPA-3D code 17.05 % 24.60 % 14.25 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
295 Mobile Stereo R-CNN
This method uses stereo information.
17.04 % 26.97 % 13.26 % 1.8 s NVIDIA Jetson TX2
M. Hussein, M. Khalil and B. Abdullah: 3D Object Detection using Mobile Stereo R- CNN on Nvidia Jetson TX2. International Conference on Advanced Engineering, Technology and Applications (ICAETA) 2021.
296 DD3D code 16.87 % 23.19 % 14.36 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
297 ADD code 16.81 % 25.61 % 13.79 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Wu, Y. Wu, J. Pu, X. Li and X. Wang: Attention-based Depth Distillation with 3D-Aware Positional Encoding for Monocular 3D Object Detection. AAAI2023 .
298 MonOri code 16.77 % 25.20 % 14.45 % 0.03 s 4 cores @ 2.5 Ghz (Python)
H. Yao, P. Han, J. Chen, Z. Wang, Y. Qiu, X. Wang, Y. wang, X. Chai, C. Cao and W. Jin: MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection. IEEE Transactions on Neural Networks and Learning Systems 2025.
299 Monohan 16.75 % 22.44 % 14.10 % 0.05 s 1 core @ 2.5 Ghz (Python)
300 MonoUNI code 16.73 % 24.75 % 13.49 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
301 MonoCD code 16.59 % 25.53 % 14.53 % n/a s 1 core @ 2.5 Ghz (Python)
L. Yan, P. Yan, S. Xiong, X. Xiang and Y. Tan: MonoCD: Monocular 3D Object Detection with Complementary Depths. CVPR 2024.
302 DID-M3D code 16.29 % 24.40 % 13.75 % 0.04 s 1 core @ 2.5 Ghz (Python)
L. Peng, X. Wu, Z. Yang, H. Liu and D. Cai: DID-M3D: Decoupling Instance Depth for Monocular 3D Object Detection. ECCV 2022.
303 MonoDETR code 16.26 % 24.52 % 13.93 % 0.04 s 1 core @ 2.5 Ghz (Python)
R. Zhang, H. Qiu, T. Wang, X. Xu, Z. Guo, Y. Qiao, P. Gao and H. Li: MonoDETR: Depth-aware Transformer for Monocular 3D Object Detection. arXiv preprint arXiv:2203.13310 2022.
304 MonoFRD 16.24 % 21.11 % 14.97 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
Z. Gong, Y. Zhao, F. Zhang, G. Gui, B. Chen, L. Yu, H. Wang, C. Yang and W. Gui: Color intuitive feature guided depth-height fusion and volume rendering for monocular 3D object detection. IEEE Transactions on Intelligent Vehicles(Major Revison) 2024.
305 DCD code 15.90 % 23.81 % 13.21 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Y. Li, Y. Chen, J. He and Z. Zhang: Densely Constrained Depth Estimator for Monocular 3D Object Detection. European Conference on Computer Vision 2022.
306 MonoDTR 15.39 % 21.99 % 12.73 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
307 GUPNet code 15.02 % 22.26 % 13.12 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
308 Cube R-CNN code 15.01 % 23.59 % 12.56 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
309 HomoLoss(monoflex) code 14.94 % 21.75 % 13.07 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
310 SGM3D code 14.65 % 22.46 % 12.97 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
311 MonoDSSMs-A 14.55 % 21.47 % 11.78 % 0.02 s 1 core @ 2.5 Ghz (C/C++)
K. Vu, T. Tran and D. Nguyen: MonoDSSMs: Efficient Monocular 3D Object Detection with Depth-Aware State Space Models. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
312 MDSNet 14.46 % 24.30 % 11.12 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
313 DEVIANT code 14.46 % 21.88 % 11.89 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
314 DLE code 14.33 % 24.23 % 10.30 % 0.06 s NVIDIA Tesla V100
C. Liu, S. Gu, L. Gool and R. Timofte: Deep Line Encoding for Monocular 3D Object Detection and Depth Prediction. Proceedings of the British Machine Vision Conference (BMVC) 2021.
315 AutoShape code 14.17 % 22.47 % 11.36 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Z. Liu, D. Zhou, F. Lu, J. Fang and L. Zhang: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
316 MonoDSSMs-M 14.15 % 19.80 % 11.56 % 0.02 s 1 core @ 2.5 Ghz (Python + C/C++)
K. Vu, T. Tran and D. Nguyen: MonoDSSMs: Efficient Monocular 3D Object Detection with Depth-Aware State Space Models. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
317 MonoFlex 13.89 % 19.94 % 12.07 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
318 MonoEF 13.87 % 21.29 % 11.71 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
319 MonoRCNN++ code 13.72 % 20.08 % 11.34 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
320 DFR-Net 13.63 % 19.40 % 10.35 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
321 temp 13.53 % 18.63 % 11.13 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
322 PS-SVDM 13.49 % 20.83 % 11.18 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
323 CaDDN code 13.41 % 19.17 % 11.46 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
324 PCT code 13.37 % 21.00 % 11.31 % 0.045 s 1 core @ 2.5 Ghz (C/C++)
L. Wang, L. Zhang, Y. Zhu, Z. Zhang, T. He, M. Li and X. Xue: Progressive Coordinate Transforms for Monocular 3D Object Detection. NeurIPS 2021.
325 Ground-Aware code 13.25 % 21.65 % 9.91 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
Y. Liu, Y. Yuan and M. Liu: Ground-aware Monocular 3D Object Detection for Autonomous Driving. IEEE Robotics and Automation Letters 2021.
326 FMF-occlusion-net 13.12 % 20.28 % 9.56 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
327 Aug3D-RPN 12.99 % 17.82 % 9.78 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
328 HomoLoss(imvoxelnet) code 12.99 % 20.10 % 10.50 % 0.20 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homogrpahy Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
329 DDMP-3D 12.78 % 19.71 % 9.80 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
330 mdab 12.74 % 18.62 % 11.10 % 0.02 s 1 core @ 2.5 Ghz (Python)
331 Kinematic3D code 12.72 % 19.07 % 9.17 % 0.12 s 1 core @ 1.5 Ghz (C/C++)
G. Brazil, G. Pons-Moll, X. Liu and B. Schiele: Kinematic 3D Object Detection in Monocular Video. ECCV 2020 .
332 MonoRCNN code 12.65 % 18.36 % 10.03 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Q. Ye, X. Chen, C. Chen, Z. Chen and T. Kim: Geometry-based Distance Decomposition for Monocular 3D Object Detection. ICCV 2021.
333 GrooMeD-NMS code 12.32 % 18.10 % 9.65 % 0.12 s 1 core @ 2.5 Ghz (Python)
A. Kumar, G. Brazil and X. Liu: GrooMeD-NMS: Grouped Mathematically Differentiable NMS for Monocular 3D Object Detection. CVPR 2021.
334 MonoRUn code 12.30 % 19.65 % 10.58 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
335 monodle code 12.26 % 17.23 % 10.29 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
336 YoloMono3D code 12.06 % 18.28 % 8.42 % 0.05 s GPU @ 2.5 Ghz (Python)
Y. Liu, L. Wang and L. Ming: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
337 IAFA 12.01 % 17.81 % 10.61 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
D. Zhou, X. Song, Y. Dai, J. Yin, F. Lu, M. Liao, J. Fang and L. Zhang: IAFA: Instance-Aware Feature Aggregation for 3D Object Detection from a Single Image. Proceedings of the Asian Conference on Computer Vision 2020.
338 MonOAPC 12.00 % 18.77 % 9.75 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
339 GAC3D 12.00 % 17.75 % 9.15 % 0.25 s 1 core @ 2.5 Ghz (Python)
M. Bui, D. Ngo, H. Pham and D. Nguyen: GAC3D: improving monocular 3D object detection with ground-guide model and adaptive convolution. 2021.
340 CMAN 11.87 % 17.77 % 9.16 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
341 PGD-FCOS3D code 11.76 % 19.05 % 9.39 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
342 D4LCN code 11.72 % 16.65 % 9.51 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
343 KM3D code 11.45 % 16.73 % 9.92 % 0.03 s 1 core @ 2.5 Ghz (Python)
P. Li: Monocular 3D Detection with Geometric Constraints Embedding and Semi-supervised Training. 2020.
344 BEVHeight++ code 11.26 % 16.69 % 9.03 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, T. Tang, J. Li, P. Chen, K. Yuan, L. Wang, Y. Huang, X. Zhang and K. Yu: Bevheight++: Toward robust visual centric 3d object detection. arXiv preprint arXiv:2309.16179 2023.
345 RefinedMPL 11.14 % 18.09 % 8.94 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
346 PatchNet code 11.12 % 15.68 % 10.17 % 0.4 s 1 core @ 2.5 Ghz (C/C++)
X. Ma, S. Liu, Z. Xia, H. Zhang, X. Zeng and W. Ouyang: Rethinking Pseudo-LiDAR Representation. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
347 ImVoxelNet code 10.97 % 17.15 % 9.15 % 0.2 s GPU @ 2.5 Ghz (Python)
D. Rukhovich, A. Vorontsova and A. Konushin: ImVoxelNet: Image to Voxels Projection for Monocular and Multi-View General-Purpose 3D Object Detection. arXiv preprint arXiv:2106.01178 2021.
348 AM3D 10.74 % 16.50 % 9.52 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
X. Ma, Z. Wang, H. Li, P. Zhang, W. Ouyang and X. Fan: Accurate Monocular Object Detection via Color- Embedded 3D Reconstruction for Autonomous Driving. Proceedings of the IEEE international Conference on Computer Vision (ICCV) 2019.
349 RTM3D code 10.34 % 14.41 % 8.77 % 0.05 s GPU @ 1.0 Ghz (Python)
P. Li, H. Zhao, P. Liu and F. Cao: RTM3D: Real-time Monocular 3D Detection from Object Keypoints for Autonomous Driving. 2020.
350 MonoPair 9.99 % 13.04 % 8.65 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
351 Neighbor-Vote 9.90 % 15.57 % 8.89 % 0.1 s GPU @ 2.5 Ghz (Python)
X. Chu, J. Deng, Y. Li, Z. Yuan, Y. Zhang, J. Ji and Y. Zhang: Neighbor-Vote: Improving Monocular 3D Object Detection through Neighbor Distance Voting. ACM MM 2021.
352 SMOKE code 9.76 % 14.03 % 7.84 % 0.03 s GPU @ 2.5 Ghz (Python)
Z. Liu, Z. Wu and R. Tóth: SMOKE: Single-Stage Monocular 3D Object Detection via Keypoint Estimation. 2020.
353 M3D-RPN code 9.71 % 14.76 % 7.42 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
354 QD-3DT
This is an online method (no batch processing).
code 9.33 % 12.81 % 7.86 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
355 TopNet-HighRes
This method makes use of Velodyne laser scans.
9.28 % 12.67 % 7.95 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
356 MonoCInIS 7.94 % 15.82 % 6.68 % 0,13 s GPU @ 2.5 Ghz (C/C++)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
357 Plane-Constraints code 7.88 % 11.29 % 6.48 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
358 SS3D 7.68 % 10.78 % 6.51 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
359 MonoCInIS 7.66 % 15.21 % 6.24 % 0,14 s GPU @ 2.5 Ghz (Python)
J. Heylen, M. De Wolf, B. Dawagne, M. Proesmans, L. Van Gool, W. Abbeloos, H. Abdelkawy and D. Reino: MonoCInIS: Camera Independent Monocular 3D Object Detection using Instance Segmentation. Proceedings of the IEEE/CVF International Conference on Computer Vision 2021.
360 Mono3D_PLiDAR code 7.50 % 10.76 % 6.10 % 0.1 s NVIDIA GeForce 1080 (pytorch)
X. Weng and K. Kitani: Monocular 3D Object Detection with Pseudo-LiDAR Point Cloud. arXiv:1903.09847 2019.
361 MonoPSR code 7.25 % 10.76 % 5.85 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
362 monospb 7.08 % 9.95 % 6.06 % 0.01 s 1 core @ 2.5 Ghz (Python)
363 Decoupled-3D 7.02 % 11.08 % 5.63 % 0.08 s GPU @ 2.5 Ghz (C/C++)
Y. Cai, B. Li, Z. Jiao, H. Li, X. Zeng and X. Wang: Monocular 3D Object Detection with Decoupled Structured Polygon Estimation and Height-Guided Depth Estimation. AAAI 2020.
364 VoxelJones code 6.35 % 7.39 % 5.80 % .18 s 1 core @ 2.5 Ghz (Python + C/C++)
M. Motro and J. Ghosh: Vehicular Multi-object Tracking with Persistent Detector Failures. arXiv preprint arXiv:1907.11306 2019.
365 MonoGRNet code 5.74 % 9.61 % 4.25 % 0.04s NVIDIA P40
Z. Qin, J. Wang and Y. Lu: MonoGRNet: A Geometric Reasoning Network for 3D Object Localization. The Thirty-Third AAAI Conference on Artificial Intelligence (AAAI-19) 2019.
366 A3DODWTDA (image) code 5.27 % 6.88 % 4.45 % 0.8 s GPU @ 3.0 Ghz (Python)
F. Gustafsson and E. Linder-Norén: Automotive 3D Object Detection Without Target Domain Annotations. 2018.
367 MonoFENet 5.14 % 8.35 % 4.10 % 0.15 s 1 core @ 3.5 Ghz (Python)
W. Bao, B. Xu and Z. Chen: MonoFENet: Monocular 3D Object Detection with Feature Enhancement Networks. IEEE Transactions on Image Processing 2019.
368 TLNet (Stereo)
This method uses stereo information.
code 4.37 % 7.64 % 3.74 % 0.1 s 1 core @ 2.5 Ghz (Python)
Z. Qin, J. Wang and Y. Lu: Triangulation Learning Network: from Monocular to Stereo 3D Object Detection. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
369 CSoR
This method makes use of Velodyne laser scans.
4.06 % 5.61 % 3.17 % 3.5 s 4 cores @ >3.5 Ghz (Python + C/C++)
L. Plotkin: PyDriver: Entwicklung eines Frameworks für räumliche Detektion und Klassifikation von Objekten in Fahrzeugumgebung. 2015.
370 Shift R-CNN (mono) code 3.87 % 6.88 % 2.83 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
371 MVRA + I-FRCNN+ 3.27 % 5.19 % 2.49 % 0.18 s GPU @ 2.5 Ghz (Python)
H. Choi, H. Kang and Y. Hyun: Multi-View Reprojection Architecture for Orientation Estimation. The IEEE International Conference on Computer Vision (ICCV) Workshops 2019.
372 SparVox3D 3.20 % 5.27 % 2.56 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
373 TopNet-UncEst
This method makes use of Velodyne laser scans.
3.02 % 3.24 % 2.26 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
374 GS3D 2.90 % 4.47 % 2.47 % 2 s 1 core @ 2.5 Ghz (C/C++)
B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang: GS3D: An Efficient 3D Object Detection Framework for Autonomous Driving. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2019.
375 3D-GCK 2.52 % 3.27 % 2.11 % 24 ms Tesla V100
N. Gählert, J. Wan, N. Jourdan, J. Finkbeiner, U. Franke and J. Denzler: Single-Shot 3D Detection of Vehicles from Monocular RGB Images via Geometrically Constrained Keypoints in Real-Time. 2020 IEEE Intelligent Vehicles Symposium (IV) 2020.
376 WeakM3D code 2.26 % 5.03 % 1.63 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, S. Yan, B. Wu, Z. Yang, X. He and D. Cai: WeakM3D: Towards Weakly Supervised Monocular 3D Object Detection. ICLR 2022.
377 ROI-10D 2.02 % 4.32 % 1.46 % 0.2 s GPU @ 3.5 Ghz (Python)
F. Manhardt, W. Kehl and A. Gaidon: ROI-10D: Monocular Lifting of 2D Detection to 6D Pose and Metric Shape. Computer Vision and Pattern Recognition (CVPR) 2019.
378 FQNet 1.51 % 2.77 % 1.01 % 0.5 s 1 core @ 2.5 Ghz (Python)
L. Liu, J. Lu, C. Xu, Q. Tian and J. Zhou: Deep Fitting Degree Scoring Network for Monocular 3D Object Detection. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
379 3D-SSMFCNN code 1.41 % 1.88 % 1.11 % 0.1 s GPU @ 1.5 Ghz (C/C++)
L. Novak: Vehicle Detection and Pose Estimation for Autonomous Driving. 2017.
380 EAEPNet 0.00 % 0.00 % 0.00 % 0.1 s 1 core @ 2.5 Ghz (Python)
381 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Pedestrian


Method Setting Code Moderate Easy Hard Runtime Environment
1 CasA++ code 49.29 % 56.33 % 46.70 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
2 TED code 49.21 % 55.85 % 46.52 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
3 UPIDet code 48.77 % 55.59 % 46.12 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
4 VPFNet code 48.36 % 54.65 % 44.98 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
5 LoGoNet code 47.43 % 53.07 % 45.22 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
6 CasA code 47.09 % 54.04 % 44.56 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
7 ImagePG 47.02 % 54.81 % 44.49 % 1 s 1 core @ 2.5 Ghz (C/C++)
8 EQ-PVRCNN code 47.02 % 55.84 % 42.94 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
9 PiFeNet code 46.71 % 56.39 % 42.71 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
10 USVLab BSAODet code 46.50 % 52.69 % 43.10 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
11 ACFNet 46.36 % 54.62 % 42.57 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
12 DPPFA-Net 46.14 % 53.58 % 42.59 % 0.1 s 1 core @ 2.5 Ghz (Python)
J. Wang, X. Kong, H. Nishikawa, Q. Lian and H. Tomiyama: Dynamic Point-Pixel Feature Alignment for Multi-modal 3D Object Detection. IEEE Internet of Things Journal 2023.
13 ... code 45.86 % 54.39 % 43.40 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
14 SVFMamba code 45.60 % 55.13 % 42.94 % N/A s 1 core @ 2.5 Ghz (C/C++)
15 CAT-Det 45.44 % 54.26 % 41.94 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
16 HotSpotNet 45.37 % 53.10 % 41.47 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
17 MLF-DET 45.29 % 50.86 % 42.05 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
18 BVIFusion+ 45.29 % 51.70 % 41.90 % 0.09 s 1 core @ 2.5 Ghz (Python)
19 LumiNet code 45.26 % 53.54 % 41.55 % 0.1 s 1 core @ 2.5 Ghz (Python)
20 vsis-PHNet 45.26 % 55.60 % 42.53 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
21 PHNetp 45.26 % 55.60 % 42.53 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
22 RobusTor3D 44.97 % 52.08 % 42.68 % ... s 1 core @ 2.5 Ghz (C/C++)
23 ACDet code 44.79 % 53.41 % 41.96 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
24 2025AAAI-SSLfusion code 44.72 % 52.39 % 42.35 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
25 dsvd+vx 44.54 % 52.67 % 41.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
26 EPNet++ 44.38 % 52.79 % 41.29 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
27 TANet code 44.34 % 53.72 % 40.49 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
28 3DSSD code 44.27 % 54.64 % 40.23 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
29 R2Pfusion-Det 44.05 % 53.15 % 41.83 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
30 SpaA 44.04 % 50.16 % 41.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
31 SFA_IGCL_Focalsconv* code 44.03 % 51.58 % 40.77 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
32 CEF code 44.01 % 52.30 % 41.42 % 0.03 s 1 core @ 2.5 Ghz (Python)
33 New_VLGCL code 43.93 % 51.26 % 41.60 % 0.4 s 1 core @ 2.5 Ghz (Python)
34 CGML 43.86 % 51.04 % 41.66 % 0.33 s 1 core @ 2.5 Ghz (C/C++)
35 Point-GNN
This method makes use of Velodyne laser scans.
code 43.77 % 51.92 % 40.14 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
36 VLGCL_NoText code 43.70 % 50.82 % 41.50 % 0.3 s 1 core @ 2.5 Ghz (Python)
37 FIRM-Net_SCF+ 43.61 % 51.80 % 41.17 % 0.07 s 1 core @ 2.5 Ghz (Python)
38 FIRM-Net-SCF 43.51 % 51.71 % 41.06 % 0.07 s 1 core @ 2.5 Ghz (Python)
39 3ONet 43.45 % 52.81 % 39.74 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
40 F-ConvNet
This method makes use of Velodyne laser scans.
code 43.38 % 52.16 % 38.80 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
41 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 43.35 % 53.10 % 40.06 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
42 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 43.29 % 52.17 % 40.29 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
43 FromVoxelToPoint code 43.28 % 51.80 % 40.71 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
44 VMVS
This method makes use of Velodyne laser scans.
43.27 % 53.44 % 39.51 % 0.25 s GPU @ 2.5 Ghz (Python)
J. Ku, A. Pon, S. Walsh and S. Waslander: Improving 3D object detection for pedestrians with virtual multi-view synthesis orientation estimation. IROS 2019.
45 P2V-RCNN 43.19 % 50.91 % 40.81 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
46 MGAF-3DSSD code 43.09 % 50.65 % 39.65 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
47 Frustum-PointPillars code 42.89 % 51.22 % 39.28 % 0.06 s 4 cores @ 3.0 Ghz (Python)
A. Paigwar, D. Sierra-Gonzalez, \. Erkent and C. Laugier: Frustum-PointPillars: A Multi-Stage Approach for 3D Object Detection using RGB Camera and LiDAR. International Conference on Computer Vision, ICCV, Workshop on Autonomous Vehicle Vision 2021.
48 Fast-CLOCs 42.72 % 52.10 % 39.08 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
49 HMFI code 42.65 % 50.88 % 39.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
50 FocalsConv* 42.56 % 50.40 % 40.24 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
51 STD code 42.47 % 53.29 % 38.35 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
52 WWW 42.47 % 50.11 % 38.99 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
53 AVOD-FPN
This method makes use of Velodyne laser scans.
code 42.27 % 50.46 % 39.04 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
54 SemanticVoxels 42.19 % 50.90 % 39.52 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
J. Fei, W. Chen, P. Heidenreich, S. Wirges and C. Stiller: SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using LiDAR Point Cloud and Semantic Segmentation. MFI 2020.
55 HMNet 42.16 % 49.90 % 38.86 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
56 F-PointNet
This method makes use of Velodyne laser scans.
code 42.15 % 50.53 % 38.08 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
57 PASS-PV-RCNN-Plus 41.95 % 47.66 % 38.90 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
58 PointPillars
This method makes use of Velodyne laser scans.
code 41.92 % 51.45 % 38.89 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
59 DPFusion code 41.85 % 49.04 % 38.29 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Y. Hu, J. Wang and J. Yan: Enhancing LiDAR Point Features with Foundation Model Priors for 3D Object Detection. ITSC 2025.
60 Voxel RCNN-Focal* code 41.71 % 49.70 % 39.45 % 0.2 s 1 core @ 2.5 Ghz (Python)
61 epBRM
This method makes use of Velodyne laser scans.
code 41.52 % 49.17 % 39.08 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
62 PG-RCNN code 41.04 % 47.99 % 38.71 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
63 IA-SSD (single) code 41.03 % 47.90 % 37.98 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
64 DFAF3D 40.99 % 47.58 % 37.65 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
65 PointPainting
This method makes use of Velodyne laser scans.
40.97 % 50.32 % 37.87 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
66 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 40.89 % 46.97 % 38.80 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
67 Voxel RCNN* code 40.68 % 48.70 % 38.51 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
68 PDV code 40.56 % 47.80 % 38.46 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
69 SVGA-Net 40.39 % 48.48 % 37.92 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
70 MPC3DNet 40.31 % 44.88 % 37.53 % 0.05 s GPU @ 1.5 Ghz (Python)
71 CAIA_PRO code 40.20 % 47.70 % 37.69 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
72 EOTL code 40.11 % 48.65 % 35.99 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
73 M3DeTR code 39.94 % 45.70 % 37.66 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
74 NoText_VLGCL code 39.75 % 46.97 % 36.98 % 0.2 s 1 core @ 2.5 Ghz (Python)
75 XPillars
This method makes use of Velodyne laser scans.
39.57 % 47.99 % 36.47 % 0.02 s GPU @ 2.5 Ghz (Python)
76 SRDL 39.43 % 47.30 % 36.99 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
77 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 39.37 % 47.98 % 36.01 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
78 ARPNET 39.31 % 48.32 % 35.93 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
79 L-AUG 39.07 % 46.76 % 35.74 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
80 IA-SSD (multi) code 39.03 % 46.51 % 35.61 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
81 work6_new1 39.00 % 46.12 % 36.53 % 0.5 s GPU @ 2.5 Ghz (Python)
82 SIF 38.74 % 46.23 % 36.06 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
83 SCNet
This method makes use of Velodyne laser scans.
38.66 % 47.83 % 35.70 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
84 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 38.58 % 46.33 % 35.71 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
85 HINTED code 37.75 % 47.33 % 34.10 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, W. Ye, H. Wu, S. Zhao, L. Xing, X. Huang, J. Deng, X. Li, C. Wen and C. Wang: HINTED: Hard Instance Enhanced Detector with Mixed-Density Feature Fusion for Sparsely- Supervised 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
86 DVFENet 37.50 % 43.55 % 35.33 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
87 MLOD
This method makes use of Velodyne laser scans.
code 37.47 % 47.58 % 35.07 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
88 PCNet3D++ 37.47 % 45.22 % 34.95 % 0.5 s GPU @ 3.5 Ghz (Python)
89 SA V1 37.38 % 44.09 % 35.19 % 0.5 s GPU @ 2.5 Ghz (Python)
90 SeSame-voxel code 37.37 % 46.53 % 33.56 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
91 S-AT GCN 37.37 % 44.63 % 34.92 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
92 M3DNet 36.93 % 45.15 % 34.27 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
93 GraphAlign(ICCV2023) code 36.89 % 41.38 % 34.95 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
94 XView 36.79 % 42.44 % 34.96 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
95 CS3D 36.44 % 43.92 % 34.27 % 0.5 s 1 core @ 2.5 Ghz (Python)
96 MSFASA-3DNet 36.32 % 42.89 % 34.33 % 0.03 s GPU @ 2.5 Ghz (Python)
97 PFF3D
This method makes use of Velodyne laser scans.
code 36.07 % 43.93 % 32.86 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
98 Ped_Net 35.75 % 43.42 % 33.05 % 0.5 s GPU @ 2.5 Ghz (Python + C/C++)
99 DensePointPillars 35.38 % 42.76 % 32.63 % 0.03 s GPU @ 2.5 Ghz (Python)
100 SeSame-point code 35.34 % 42.29 % 33.02 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
101 BirdNet+
This method makes use of Velodyne laser scans.
code 35.06 % 41.55 % 32.93 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
102 geo-pillars 34.87 % 42.23 % 32.38 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
103 DSFNet 34.60 % 43.19 % 31.85 % 0.5 s GPU @ 2.5 Ghz (Python)
104 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 34.59 % 42.27 % 31.37 % 0.0047s 1 core @ 2.5 Ghz (python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
105 PL++: PV-RCNN++
This method uses stereo information.
This method makes use of Velodyne laser scans.
33.89 % 41.53 % 31.42 % 0.342 s RTX 4060Ti (Python)
X. Gong, X. Huang, S. Chen and B. Zhang: Enhancing 3D Detection Accuracy in Autonomous Driving through Pseudo-LiDAR Augmentation and Downsampling. 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) 2024.
106 DSGN++
This method uses stereo information.
code 32.74 % 43.05 % 29.54 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
107 StereoDistill 32.23 % 44.12 % 28.95 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
108 Fade-kd 32.17 % 39.47 % 29.40 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
109 PointPillars_mmdet3d 32.10 % 39.38 % 29.54 % 0.03 s 1 core @ 2.5 Ghz (Python)
110 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 31.46 % 37.99 % 29.46 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
111 T-SSD 31.36 % 39.36 % 29.14 % 0.04 1 core @ 2.0 Ghz (C/C++)
112 SeSame-pillar code 31.00 % 37.61 % 28.86 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
113 SparsePool code 30.38 % 37.84 % 26.94 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
114 MMLAB LIGA-Stereo
This method uses stereo information.
code 30.00 % 40.46 % 27.07 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
115 DMF
This method uses stereo information.
29.77 % 37.21 % 27.62 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
116 SeSame-voxel w/score code 28.26 % 34.14 % 26.15 % N/A s GPU @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
117 SparsePool code 27.92 % 35.52 % 25.87 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
118 AVOD
This method makes use of Velodyne laser scans.
code 27.86 % 36.10 % 25.76 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
119 SeSame-pillar w/scor code 27.23 % 33.87 % 25.27 % N/A s 1 core @ 2.5 Ghz (C/C++)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
120 CSW3D
This method makes use of Velodyne laser scans.
26.64 % 33.75 % 23.34 % 0.03 s 4 cores @ 2.5 Ghz (C/C++)
J. Hu, T. Wu, H. Fu, Z. Wang and K. Ding: Cascaded Sliding Window Based Real-Time 3D Region Proposal for Pedestrian Detection. ROBIO 2019.
121 PointRGBNet 26.40 % 34.77 % 24.03 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
122 Disp R-CNN (velo)
This method uses stereo information.
code 25.80 % 37.12 % 22.04 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
123 Disp R-CNN
This method uses stereo information.
code 25.40 % 35.75 % 21.79 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
124 CG-Stereo
This method uses stereo information.
24.31 % 33.22 % 20.95 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
125 Fade 3D code 24.06 % 30.25 % 21.84 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
W. Ye, Q. Xia, H. Wu, Z. Dong, R. Zhong, C. Wang and C. Wen: Fade3D: Fast and Deployable 3D Object Detection for Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems 2025.
126 SeSame-point w/score code 23.33 % 31.13 % 20.07 % N/A s 1 core @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
127 DDStereo
This method uses stereo information.
21.92 % 32.14 % 19.43 % 0.02 s GPU @ 2.5 Ghz (Python)
128 YOLOStereo3D
This method uses stereo information.
code 19.75 % 28.49 % 16.48 % 0.1 s GPU 1080Ti
Y. Liu, L. Wang and M. Liu: YOLOStereo3D: A Step Back to 2D for Efficient Stereo 3D Detection. 2021 International Conference on Robotics and Automation (ICRA) 2021.
129 OC Stereo
This method uses stereo information.
code 17.58 % 24.48 % 15.60 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
130 BirdNet
This method makes use of Velodyne laser scans.
17.08 % 22.04 % 15.82 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
131 CPD++(unsupervised) code 15.58 % 17.64 % 14.60 % 0.1 s GPU @ >3.5 Ghz (Python)
132 DSGN
This method uses stereo information.
code 15.55 % 20.53 % 14.15 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
133 Complexer-YOLO
This method makes use of Velodyne laser scans.
13.96 % 17.60 % 12.70 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
134 MonOri code 12.76 % 18.97 % 11.00 % 0.03 s 4 cores @ 2.5 Ghz (Python)
H. Yao, P. Han, J. Chen, Z. Wang, Y. Qiu, X. Wang, Y. wang, X. Chai, C. Cao and W. Jin: MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection. IEEE Transactions on Neural Networks and Learning Systems 2025.
135 MonoMH code 11.70 % 17.45 % 10.05 % 0.04 s 1 core @ 2.5 Ghz (Python)
136 RT3D-GMP
This method uses stereo information.
11.41 % 16.23 % 10.12 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
137 MonoAFKD 11.32 % 17.15 % 9.94 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
138 MonoLSS 11.27 % 17.09 % 10.00 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
139 DD3D code 11.04 % 16.64 % 9.38 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
140 MDD-M3D-X 10.98 % 16.68 % 9.20 % 0.01 s 1 core @ 2.5 Ghz (Python)
141 MonoCoP 10.94 % 16.76 % 9.31 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
142 PS-fld code 10.82 % 16.95 % 9.26 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
143 MonoHPE-Mask 10.74 % 15.83 % 9.38 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
144 AM 10.61 % 16.08 % 8.90 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
145 fdaa11 10.58 % 16.26 % 8.96 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
146 MonoGeo code 10.54 % 16.62 % 9.03 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
147 CIE 10.53 % 16.19 % 8.97 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
148 MonoHPE 10.49 % 15.91 % 8.90 % 0.04 s 1 core @ 2.5 Ghz (Python)
149 OPA-3D code 10.49 % 15.65 % 8.80 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
150 MonoCLUE_all 10.45 % 16.18 % 8.75 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
151 MonoUNI code 10.34 % 15.78 % 8.74 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
152 MonoCLUE 10.32 % 16.03 % 8.76 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
153 MonoLSPF 10.32 % 15.90 % 8.67 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
154 ESGN
This method uses stereo information.
10.27 % 14.05 % 9.02 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
155 MonoDTR 10.18 % 15.33 % 8.61 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
156 GUPNet code 9.76 % 14.95 % 8.41 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
157 MonoFRD 8.88 % 13.86 % 7.53 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
Z. Gong, Y. Zhao, F. Zhang, G. Gui, B. Chen, L. Yu, H. Wang, C. Yang and W. Gui: Color intuitive feature guided depth-height fusion and volume rendering for monocular 3D object detection. IEEE Transactions on Intelligent Vehicles(Major Revison) 2024.
158 SGM3D code 8.81 % 13.99 % 7.26 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
159 CMKD code 8.79 % 13.94 % 7.42 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
160 AMNet+DDAD15M code 8.67 % 13.18 % 7.43 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
161 CPD(unsupervised) code 8.66 % 10.87 % 7.83 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
H. Wu, S. Zhao, X. Huang, C. Wen, X. Li and C. Wang: Commonsense Prototype for Outdoor Unsupervised 3D Object Detection. CVPR 2024.
162 DEVIANT code 8.65 % 13.43 % 7.69 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
163 IDEAL-M3D 60% 8.50 % 13.73 % 7.52 % 0.04 s 1 core @ 2.5 Ghz (Python)
164 AMNet code 8.39 % 12.79 % 7.07 % 0.03 s GPU @ 1.0 Ghz (Python)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
165 PS-SVDM 8.33 % 12.93 % 7.20 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
166 MonoNeRD code 8.26 % 13.20 % 7.02 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
167 mdab 8.22 % 12.88 % 6.91 % 0.02 s 1 core @ 2.5 Ghz (Python)
168 CaDDN code 8.14 % 12.87 % 6.76 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
169 MonoRCNN++ code 7.90 % 12.26 % 6.62 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
170 HomoLoss(monoflex) code 7.66 % 11.87 % 6.82 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
171 temp 7.61 % 11.83 % 6.29 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
172 Mix-Teaching code 7.47 % 11.67 % 6.61 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
173 LPCG-Monoflex code 7.33 % 10.82 % 6.18 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
174 MonoDDE 7.32 % 11.13 % 6.67 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
175 RefinedMPL 7.18 % 11.14 % 5.84 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
176 MDSNet 7.09 % 10.68 % 6.06 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
177 Cube R-CNN code 6.95 % 11.17 % 5.87 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
178 PS-SVDM 6.93 % 11.16 % 5.96 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
179 TopNet-HighRes
This method makes use of Velodyne laser scans.
6.92 % 10.40 % 6.63 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
180 MonoRUn code 6.78 % 10.88 % 5.83 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
181 MonoPair 6.68 % 10.02 % 5.53 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
182 monodle code 6.55 % 9.64 % 5.44 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
183 DA3D+KM3D+v2-99 code 6.32 % 9.38 % 5.54 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
184 MonoFlex 6.31 % 9.43 % 5.26 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
185 UniCuboid 6.05 % 9.03 % 5.08 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
186 MonOAPC 5.87 % 8.75 % 4.84 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
187 FMF-occlusion-net 5.23 % 7.62 % 4.28 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
188 Aug3D-RPN 4.71 % 6.01 % 3.87 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
189 Shift R-CNN (mono) code 4.66 % 7.95 % 4.16 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
190 monospb 4.07 % 5.20 % 3.43 % 0.01 s 1 core @ 2.5 Ghz (Python)
191 MonoPSR code 4.00 % 6.12 % 3.30 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
192 DA3D+KM3D code 3.64 % 5.60 % 3.10 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
193 DFR-Net 3.62 % 6.09 % 3.39 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
194 DDMP-3D 3.55 % 4.93 % 3.01 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
195 M3D-RPN code 3.48 % 4.92 % 2.94 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
196 D4LCN code 3.42 % 4.55 % 2.83 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
197 CMAN 3.41 % 4.62 % 2.87 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
198 QD-3DT
This is an online method (no batch processing).
code 3.37 % 5.53 % 3.02 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
199 DA3D code 2.95 % 4.62 % 2.58 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
200 MonoEF 2.79 % 4.27 % 2.21 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
201 RT3DStereo
This method uses stereo information.
2.45 % 3.28 % 2.35 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
202 MonoLiG code 1.94 % 2.89 % 1.91 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
203 TopNet-UncEst
This method makes use of Velodyne laser scans.
1.87 % 3.42 % 1.73 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
204 SS3D 1.78 % 2.31 % 1.48 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
205 PGD-FCOS3D code 1.49 % 2.28 % 1.38 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
206 SparVox3D 1.35 % 1.93 % 1.04 % 0.05 s GPU @ 2.0 Ghz (Python)
E. Balatkan and F. Kıraç: Improving Regression Performance on Monocular 3D Object Detection Using Bin-Mixing and Sparse Voxel Data. 2021 6th International Conference on Computer Science and Engineering (UBMK) 2021.
207 Plane-Constraints code 1.09 % 1.73 % 1.04 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
208 GATE3D code 0.15 % 0.12 % 0.15 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
209 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Cyclist


Method Setting Code Moderate Easy Hard Runtime Environment
1 ImagePG 74.86 % 86.59 % 66.46 % 1 s 1 core @ 2.5 Ghz (C/C++)
2 UPIDet code 74.32 % 86.74 % 67.45 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Zhang, J. Hou, Y. Yuan and G. Xing: Unleash the Potential of Image Branch for Cross-modal 3D Object Detection. Thirty-seventh Conference on Neural Information Processing Systems 2023.
3 TED code 74.12 % 88.82 % 66.84 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, C. Wen, W. Li, R. Yang and C. Wang: Transformation-Equivariant 3D Object Detection for Autonomous Driving. AAAI 2023.
4 CasA++ code 73.79 % 87.76 % 66.84 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
5 CasA code 73.47 % 87.91 % 66.17 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Wu, J. Deng, C. Wen, X. Li and C. Wang: CasA: A Cascade Attention Network for 3D Object Detection from LiDAR point clouds. IEEE Transactions on Geoscience and Remote Sensing 2022.
6 LoGoNet code 71.70 % 84.47 % 64.67 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, T. Ma, Y. Hou, B. Shi, Y. Yang, Y. Liu, X. Wu, Q. Chen, Y. Li, Y. Qiao and others: LoGoNet: Towards Accurate 3D Object Detection with Local-to-Global Cross-Modal Fusion. CVPR 2023.
7 MLF-DET 70.71 % 83.31 % 63.71 % 0.09 s 1 core @ 2.5 Ghz (C/C++)
Z. Lin, Y. Shen, S. Zhou, S. Chen and N. Zheng: MLF-DET: Multi-Level Fusion for Cross- Modal 3D Object Detection. International Conference on Artificial Neural Networks 2023.
8 USVLab BSAODet code 70.48 % 83.17 % 62.46 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
W. Xiao, Y. Peng, C. Liu, J. Gao, Y. Wu and X. Li: Balanced Sample Assignment and Objective for Single-Model Multi-Class 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2023.
9 HMFI code 70.37 % 84.02 % 62.57 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
X. Li, B. Shi, Y. Hou, X. Wu, T. Ma, Y. Li and L. He: Homogeneous Multi-modal Feature Fusion and Interaction for 3D Object Detection. ECCV 2022.
10 SpaA 70.34 % 86.01 % 63.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
11 vsis-PHNet 70.29 % 84.85 % 62.22 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
12 WWW 69.37 % 83.40 % 62.69 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
13 EQ-PVRCNN code 69.10 % 85.41 % 62.30 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, L. Jiang, Y. Sun, B. Schiele and J. Jia: A Unified Query-based Paradigm for Point Cloud Understanding. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2022.
14 PHNetc 69.04 % 83.42 % 61.29 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
15 dsvd+vx 68.95 % 87.61 % 60.78 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
16 CAT-Det 68.81 % 83.68 % 61.45 % 0.3 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Zhang, J. Chen and D. Huang: CAT-Det: Contrastively Augmented Transformer for Multi-modal 3D Object Detection. CVPR 2022.
17 BtcDet
This method makes use of Velodyne laser scans.
code 68.68 % 82.81 % 61.81 % 0.09 s GPU @ 2.5 Ghz (Python + C/C++)
Q. Xu, Y. Zhong and U. Neumann: Behind the Curtain: Learning Occluded Shapes for 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2022.
18 RagNet3D code 68.55 % 83.84 % 61.94 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Chen, Y. Han, Z. Yan, J. Qian, J. Li and J. Yang: Ragnet3d: Learning Distinguishable Representation for Pooled Grids in 3d Object Detection. Available at SSRN 4979473 .
19 DSA-PV-RCNN
This method makes use of Velodyne laser scans.
code 68.54 % 82.19 % 61.33 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
P. Bhattacharyya, C. Huang and K. Czarnecki: SA-Det3D: Self-Attention Based Context-Aware 3D Object Detection. 2021.
20 PASS-PV-RCNN-Plus 68.45 % 80.43 % 60.93 % 1 s 1 core @ 2.5 Ghz (Python)
Anonymous: Leveraging Anchor-based LiDAR 3D Object Detection via Point Assisted Sample Selection. will submit to computer vision conference/journal 2024.
21 ACFNet 68.37 % 84.29 % 62.08 % 0.11 s 1 core @ 2.5 Ghz (C/C++)
Y. Tian, X. Zhang, X. Wang, J. Xu, J. Wang, R. Ai, W. Gu and W. Ding: ACF-Net: Asymmetric Cascade Fusion for 3D Detection With LiDAR Point Clouds and Images. IEEE Transactions on Intelligent Vehicles 2023.
22 3ONet 68.37 % 82.34 % 60.20 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
H. Hoang and M. Yoo: 3ONet: 3-D Detector for Occluded Object Under Obstructed Conditions. IEEE Sensors Journal 2023.
23 PG-RCNN code 67.82 % 82.77 % 61.25 % 0.06 s GPU @ 1.5 Ghz (Python)
I. Koo, I. Lee, S. Kim, H. Kim, W. Jeon and C. Kim: PG-RCNN: Semantic Surface Point Generation for 3D Object Detection. 2023.
24 PDV code 67.81 % 83.04 % 60.46 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Hu, T. Kuai and S. Waslander: Point Density-Aware Voxels for LiDAR 3D Object Detection. CVPR 2022.
25 RangeIoUDet
This method makes use of Velodyne laser scans.
67.77 % 83.12 % 60.26 % 0.02 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liang, Z. Zhang, M. Zhang, X. Zhao and S. Pu: RangeIoUDet: Range Image Based Real-Time 3D Object Detector Optimized by Intersection Over Union. CVPR 2021.
26 MPC3DNet 67.55 % 80.92 % 60.36 % 0.05 s GPU @ 1.5 Ghz (Python)
27 SPG_mini
This method makes use of Velodyne laser scans.
code 66.96 % 80.21 % 60.50 % 0.09 s GPU @ 2.5 Ghz (Python)
Q. Xu, Y. Zhou, W. Wang, C. Qi and D. Anguelov: SPG: Unsupervised Domain Adaptation for 3D Object Detection via Semantic Point Generation. Proceedings of the IEEE conference on computer vision and pattern recognition (ICCV) 2021.
28 M3DeTR code 66.74 % 83.83 % 59.03 % n/a s GPU @ 1.0 Ghz (Python)
T. Guan, J. Wang, S. Lan, R. Chandra, Z. Wu, L. Davis and D. Manocha: M3DeTR: Multi-representation, Multi- scale, Mutual-relation 3D Object Detection with Transformers. 2021.
29 ACDet code 66.61 % 83.80 % 59.99 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
J. Xu, G. Wang, X. Zhang and G. Wan: ACDet: Attentive Cross-view Fusion for LiDAR-based 3D Object Detection. 3DV 2022.
30 DPFusion code 66.47 % 79.96 % 58.47 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
Y. Mo, Y. Wu, J. Zhao, Y. Hu, J. Wang and J. Yan: Enhancing LiDAR Point Features with Foundation Model Priors for 3D Object Detection. ITSC 2025.
31 IA-SSD (single) code 66.25 % 82.36 % 59.70 % 0.013 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
32 FIRM-Net_SCF+ 65.98 % 81.72 % 58.18 % 0.07 s 1 core @ 2.5 Ghz (Python)
33 HotSpotNet 65.95 % 82.59 % 59.00 % 0.04 s 1 core @ 2.5 Ghz (Python + C/C++)
Q. Chen, L. Sun, Z. Wang, K. Jia and A. Yuille: object as hotspots. Proceedings of the European Conference on Computer Vision (ECCV) 2020.
34 DFAF3D 65.86 % 82.09 % 59.02 % 0.05 s 1 core @ 2.5 Ghz (Python)
Q. Tang, X. Bai, J. Guo, B. Pan and W. Jiang: DFAF3D: A dual-feature-aware anchor-free single-stage 3D detector for point clouds. Image and Vision Computing 2023.
35 FIRM-Net-SCF 65.81 % 81.63 % 58.09 % 0.07 s 1 core @ 2.5 Ghz (Python)
36 Fast-CLOCs 65.31 % 82.83 % 57.43 % 0.1 s GPU @ 2.5 Ghz (Python)
S. Pang, D. Morris and H. Radha: Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection. Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) 2022.
37 F-ConvNet
This method makes use of Velodyne laser scans.
code 65.07 % 81.98 % 56.54 % 0.47 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Wang and K. Jia: Frustum ConvNet: Sliding Frustums to Aggregate Local Point-Wise Features for Amodal 3D Object Detection. IROS 2019.
38 CGML 65.06 % 81.52 % 59.68 % 0.33 s 1 core @ 2.5 Ghz (C/C++)
39 VLGCL_NoText code 64.96 % 81.05 % 59.68 % 0.3 s 1 core @ 2.5 Ghz (Python)
40 BVIFusion+ 64.55 % 80.65 % 58.27 % 0.09 s 1 core @ 2.5 Ghz (Python)
41 GraphAlign(ICCV2023) code 64.43 % 78.42 % 58.71 % 0.03 s GPU @ 2.0 Ghz (Python)
Z. Song, H. Wei, L. Bai, L. Yang and C. Jia: GraphAlign: Enhancing accurate feature alignment by graph matching for multi-modal 3D object detection. Proceedings of the IEEE/CVF International Conference on Computer Vision 2023.
42 RobusTor3D 64.38 % 78.73 % 58.66 % ... s 1 core @ 2.5 Ghz (C/C++)
43 3DSSD code 64.10 % 82.48 % 56.90 % 0.04 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu and J. Jia: 3DSSD: Point-based 3D Single Stage Object Detector. CVPR 2020.
44 VPFNet code 64.10 % 77.64 % 58.00 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
C. Wang, H. Chen and L. Fu: VPFNet: Voxel-Pixel Fusion Network for Multi-class 3D Object Detection. 2021.
C. Wang, H. Chen, Y. Chen, P. Hsiao and L. Fu: VoPiFNet: Voxel-Pixel Fusion Network for Multi-Class 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2024.
45 SVFMamba code 63.97 % 77.63 % 57.36 % N/A s 1 core @ 2.5 Ghz (C/C++)
46 PointPainting
This method makes use of Velodyne laser scans.
63.78 % 77.63 % 55.89 % 0.4 s GPU @ 2.5 Ghz (Python + C/C++)
S. Vora, A. Lang, B. Helou and O. Beijbom: PointPainting: Sequential Fusion for 3D Object Detection. CVPR 2020.
47 MMLab PV-RCNN
This method makes use of Velodyne laser scans.
code 63.71 % 78.60 % 57.65 % 0.08 s 1 core @ 2.5 Ghz (Python + C/C++)
S. Shi, C. Guo, L. Jiang, Z. Wang, J. Shi, X. Wang and H. Li: PV-RCNN: Point-Voxel Feature Set Abstraction for 3D Object Detection. CVPR 2020.
48 R2Pfusion-Det 63.70 % 80.74 % 56.91 % 0.3 s 1 core @ 2.5 Ghz (C/C++)
49 MMLab-PartA^2
This method makes use of Velodyne laser scans.
code 63.52 % 79.17 % 56.93 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, Z. Wang, J. Shi, X. Wang and H. Li: From Points to Parts: 3D Object Detection from Point Cloud with Part-aware and Part-aggregation Network. IEEE Transactions on Pattern Analysis and Machine Intelligence 2020.
50 Point-GNN
This method makes use of Velodyne laser scans.
code 63.48 % 78.60 % 57.08 % 0.6 s GPU @ 2.5 Ghz (Python)
W. Shi and R. Rajkumar: Point-GNN: Graph Neural Network for 3D Object Detection in a Point Cloud. CVPR 2020.
51 CAIA_PRO code 63.47 % 78.24 % 56.12 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
52 SFA_IGCL_Focalsconv* code 63.46 % 77.13 % 58.81 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
53 MGAF-3DSSD code 63.43 % 80.64 % 55.15 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: Anchor-free 3D Single Stage Detector with Mask-Guided Attention for Point Cloud. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
54 FromVoxelToPoint code 63.41 % 81.49 % 56.40 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
J. Li, H. Dai, L. Shao and Y. Ding: From Voxel to Point: IoU-guided 3D Object Detection for Point Cloud with Voxel-to- Point Decoder. MM '21: The 29th ACM International Conference on Multimedia (ACM MM) 2021.
55 P2V-RCNN 63.13 % 78.62 % 56.81 % 0.1 s 2 cores @ 2.5 Ghz (Python)
J. Li, S. Luo, Z. Zhu, H. Dai, A. Krylov, Y. Ding and L. Shao: P2V-RCNN: Point to Voxel Feature Learning for 3D Object Detection from Point Clouds. IEEE Access 2021.
56 HMNet 63.05 % 79.77 % 55.76 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
57 HINTED code 63.01 % 76.21 % 55.85 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
Q. Xia, W. Ye, H. Wu, S. Zhao, L. Xing, X. Huang, J. Deng, X. Li, C. Wen and C. Wang: HINTED: Hard Instance Enhanced Detector with Mixed-Density Feature Fusion for Sparsely- Supervised 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition 2024.
58 New_VLGCL code 62.89 % 75.37 % 58.08 % 0.4 s 1 core @ 2.5 Ghz (Python)
59 H^23D R-CNN code 62.74 % 78.67 % 55.78 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
J. Deng, W. Zhou, Y. Zhang and H. Li: From Multi-View to Hollow-3D: Hallucinated Hollow-3D R-CNN for 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2021.
60 CEF code 62.49 % 80.56 % 55.91 % 0.03 s 1 core @ 2.5 Ghz (Python)
61 Voxel RCNN* code 62.37 % 80.89 % 56.12 % 0.07 s 1 core @ 2.5 Ghz (C/C++)
62 2025AAAI-SSLfusion code 62.32 % 78.06 % 56.49 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
63 LumiNet code 62.31 % 80.43 % 55.72 % 0.1 s 1 core @ 2.5 Ghz (Python)
64 SVGA-Net 62.28 % 78.58 % 54.88 % 0.03s 1 core @ 2.5 Ghz (Python + C/C++)
Q. He, Z. Wang, H. Zeng, Y. Zeng and Y. Liu: SVGA-Net: Sparse Voxel-Graph Attention Network for 3D Object Detection from Point Clouds. AAAI 2022.
65 SRDL 62.02 % 77.35 % 55.52 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
ERROR: Wrong syntax in BIBTEX file.
66 Faraway-Frustum
This method makes use of Velodyne laser scans.
code 62.00 % 77.36 % 55.40 % 0.1 s GPU @ 2.5 Ghz (Python)
H. Zhang, D. Yang, E. Yurtsever, K. Redmill and U. Ozguner: Faraway-frustum: Dealing with lidar sparsity for 3D object detection using fusion. 2021 IEEE International Intelligent Transportation Systems Conference (ITSC) 2021.
67 DVFENet 62.00 % 78.73 % 55.18 % 0.05 s 1 core @ 2.5 Ghz (Python + C/C++)
Y. He, G. Xia, Y. Luo, L. Su, Z. Zhang, W. Li and P. Wang: DVFENet: Dual-branch Voxel Feature Extraction Network for 3D Object Detection. Neurocomputing 2021.
68 IA-SSD (multi) code 61.94 % 78.35 % 55.70 % 0.014 s 1 core @ 2.5 Ghz (C/C++)
Y. Zhang, Q. Hu, G. Xu, Y. Ma, J. Wan and Y. Guo: Not All Points Are Equal: Learning Highly Efficient Point-based Detectors for 3D LiDAR Point Clouds. CVPR 2022.
69 Voxel RCNN-Focal* code 61.91 % 75.93 % 56.25 % 0.2 s 1 core @ 2.5 Ghz (Python)
70 S-AT GCN 61.70 % 75.24 % 55.32 % 0.02 s GPU @ 2.0 Ghz (Python)
L. Wang, C. Wang, X. Zhang, T. Lan and J. Li: S-AT GCN: Spatial-Attention Graph Convolution Network based Feature Enhancement for 3D Object Detection. CoRR 2021.
71 FocalsConv* 61.63 % 75.43 % 57.13 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
72 SIF 61.61 % 77.13 % 55.11 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
P. An: SIF. Submitted to CVIU 2021.
73 STD code 61.59 % 78.69 % 55.30 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Z. Yang, Y. Sun, S. Liu, X. Shen and J. Jia: STD: Sparse-to-Dense 3D Object Detector for Point Cloud. ICCV 2019.
74 ... code 61.48 % 76.89 % 57.17 % 0.2 s 1 core @ 2.5 Ghz (C/C++)
75 T-SSD 60.70 % 76.05 % 55.28 % 0.04 1 core @ 2.0 Ghz (C/C++)
76 XPillars
This method makes use of Velodyne laser scans.
60.68 % 74.74 % 55.12 % 0.02 s GPU @ 2.5 Ghz (Python)
77 AB3DMOT
This method makes use of Velodyne laser scans.
This is an online method (no batch processing).
code 60.30 % 75.42 % 53.81 % 0.0047s 1 core @ 2.5 Ghz (Python)
X. Weng and K. Kitani: A Baseline for 3D Multi-Object Tracking. arXiv:1907.03961 2019.
78 MSFASA-3DNet 60.30 % 75.60 % 53.83 % 0.03 s GPU @ 2.5 Ghz (Python)
79 SA V1 60.00 % 73.82 % 53.43 % 0.5 s GPU @ 2.5 Ghz (Python)
80 EPNet++ 59.71 % 76.15 % 53.67 % 0.1 s GPU @ 2.5 Ghz (Python)
Z. Liu, T. Huang, B. Li, X. Chen, X. Wang and X. Bai: EPNet++: Cascade Bi-Directional Fusion for Multi-Modal 3D Object Detection. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
81 XView 59.55 % 77.24 % 53.47 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
L. Xie, G. Xu, D. Cai and X. He: X-view: Non-egocentric Multi-View 3D Object Detector. 2021.
82 TANet code 59.44 % 75.70 % 52.53 % 0.035s GPU @ 2.5 Ghz (Python + C/C++)
Z. Liu, X. Zhao, T. Huang, R. Hu, Y. Zhou and X. Bai: TANet: Robust 3D Object Detection from Point Clouds with Triple Attention. AAAI 2020.
83 L-AUG 59.30 % 73.32 % 53.74 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
T. Cortinhal, I. Gouigah and E. Aksoy: Semantics-aware LiDAR-Only Pseudo Point Cloud Generation for 3D Object Detection. 2023.
84 NoText_VLGCL code 58.98 % 75.70 % 53.75 % 0.2 s 1 core @ 2.5 Ghz (Python)
85 EOTL code 58.96 % 75.20 % 50.41 % TBD s 1 core @ 2.5 Ghz (Python + C/C++)
R. Yang, Z. Yan, T. Yang, Y. Wang and Y. Ruichek: Efficient Online Transfer Learning for Road Participants Detection in Autonomous Driving. IEEE Sensors Journal 2023.
86 MMLab-PointRCNN
This method makes use of Velodyne laser scans.
code 58.82 % 74.96 % 52.53 % 0.1 s GPU @ 2.5 Ghz (Python + C/C++)
S. Shi, X. Wang and H. Li: Pointrcnn: 3d object proposal generation and detection from point cloud. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2019.
87 PCNet3D++ 58.67 % 76.16 % 52.02 % 0.5 s GPU @ 3.5 Ghz (Python)
88 PointPillars
This method makes use of Velodyne laser scans.
code 58.65 % 77.10 % 51.92 % 16 ms 1080ti GPU and Intel i7 CPU
A. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom: PointPillars: Fast Encoders for Object Detection from Point Clouds. CVPR 2019.
89 ARPNET 58.20 % 74.21 % 52.13 % 0.08 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Ye, C. Zhang and X. Hao: ARPNET: attention region proposal network for 3D object detection. Science China Information Sciences 2019.
90 DensePointPillars 57.36 % 70.95 % 50.98 % 0.03 s GPU @ 2.5 Ghz (Python)
91 work6_new1 57.14 % 72.38 % 51.29 % 0.5 s GPU @ 2.5 Ghz (Python)
92 CS3D 56.92 % 74.30 % 50.41 % 0.5 s 1 core @ 2.5 Ghz (Python)
93 Fade-kd 56.65 % 73.63 % 50.51 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
94 epBRM
This method makes use of Velodyne laser scans.
code 56.13 % 72.08 % 49.91 % 0.10 s 1 core @ 2.5 Ghz (C/C++)
K. Shin: Improving a Quality of 3D Object Detection by Spatial Transformation Mechanism. arXiv preprint arXiv:1910.04853 2019.
95 F-PointNet
This method makes use of Velodyne laser scans.
code 56.12 % 72.27 % 49.01 % 0.17 s GPU @ 3.0 Ghz (Python)
C. Qi, W. Liu, C. Wu, H. Su and L. Guibas: Frustum PointNets for 3D Object Detection from RGB-D Data. arXiv preprint arXiv:1711.08488 2017.
96 M3DNet 55.64 % 70.47 % 49.24 % 0.5 s 1 core @ 2.5 Ghz (C/C++)
97 geo-pillars 55.39 % 69.53 % 49.12 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
98 SeSame-point code 54.56 % 69.55 % 48.34 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
99 PointPillars_mmdet3d 54.47 % 70.51 % 48.34 % 0.03 s 1 core @ 2.5 Ghz (Python)
100 SeSame-voxel code 54.36 % 70.97 % 48.66 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
101 DSFNet 54.26 % 67.80 % 48.25 % 0.5 s GPU @ 2.5 Ghz (Python)
102 BirdNet+
This method makes use of Velodyne laser scans.
code 53.84 % 65.67 % 49.06 % 0.11 s Titan Xp (PyTorch)
A. Barrera, J. Beltrán, C. Guindel, J. Iglesias and F. García: BirdNet+: Two-Stage 3D Object Detection in LiDAR through a Sparsity-Invariant Bird’s Eye View. IEEE Access 2021.
103 PointRGBNet 52.15 % 67.05 % 46.78 % 0.08 s 4 cores @ 2.5 Ghz (Python + C/C++)
P. Xie Desheng: Real-time Detection of 3D Objects Based on Multi-Sensor Information Fusion. Automotive Engineering 2022.
104 SeSame-pillar code 51.74 % 64.55 % 46.13 % N/A s TITAN RTX @ 1.35 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
105 DMF
This method uses stereo information.
51.33 % 65.51 % 45.05 % 0.2 s 1 core @ 2.5 Ghz (Python + C/C++)
X. J. Chen and W. Xu: Disparity-Based Multiscale Fusion Network for Transportation Detection. IEEE Transactions on Intelligent Transportation Systems 2022.
106 PiFeNet code 51.10 % 67.50 % 44.66 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
D. Le, H. Shi, H. Rezatofighi and J. Cai: Accurate and Real-time 3D Pedestrian Detection Using an Efficient Attentive Pillar Network. IEEE Robotics and Automation Letters 2022.
107 SCNet
This method makes use of Velodyne laser scans.
50.79 % 67.98 % 45.15 % 0.04 s GPU @ 3.0 Ghz (Python)
Z. Wang, H. Fu, L. Wang, L. Xiao and B. Dai: SCNet: Subdivision Coding Network for Object Detection Based on 3D Point Cloud. IEEE Access 2019.
108 AVOD-FPN
This method makes use of Velodyne laser scans.
code 50.55 % 63.76 % 44.93 % 0.1 s Titan X (Pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
109 Fade 3D code 50.02 % 66.04 % 44.39 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
W. Ye, Q. Xia, H. Wu, Z. Dong, R. Zhong, C. Wang and C. Wen: Fade3D: Fast and Deployable 3D Object Detection for Autonomous Driving. IEEE Transactions on Intelligent Transportation Systems 2025.
110 MLOD
This method makes use of Velodyne laser scans.
code 49.43 % 68.81 % 42.84 % 0.12 s GPU @ 1.5 Ghz (Python)
J. Deng and K. Czarnecki: MLOD: A multi-view 3D object detection based on robust feature fusion method. arXiv preprint arXiv:1909.04163 2019.
111 PL++: PV-RCNN++
This method uses stereo information.
This method makes use of Velodyne laser scans.
48.97 % 62.80 % 42.80 % 0.342 s RTX 4060Ti (Python)
X. Gong, X. Huang, S. Chen and B. Zhang: Enhancing 3D Detection Accuracy in Autonomous Driving through Pseudo-LiDAR Augmentation and Downsampling. 2024 International Conference on Image Processing, Computer Vision and Machine Learning (ICICML) 2024.
112 BirdNet+ (legacy)
This method makes use of Velodyne laser scans.
code 47.72 % 67.38 % 42.89 % 0.1 s Titan Xp (PyTorch)
A. Barrera, C. Guindel, J. Beltrán and F. García: BirdNet+: End-to-End 3D Object Detection in LiDAR Bird’s Eye View. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
113 PFF3D
This method makes use of Velodyne laser scans.
code 46.78 % 63.27 % 41.37 % 0.05 s GPU @ 3.0 Ghz (Python + C/C++)
L. Wen and K. Jo: Fast and Accurate 3D Object Detection for Lidar-Camera-Based Autonomous Vehicles Using One Shared Voxel-Based Backbone. IEEE Access 2021.
114 StereoDistill 44.02 % 63.96 % 39.19 % 0.4 s 1 core @ 2.5 Ghz (Python)
Z. Liu, X. Ye, X. Tan, D. Errui, Y. Zhou and X. Bai: StereoDistill: Pick the Cream from LiDAR for Distilling Stereo-based 3D Object Detection. Proceedings of the AAAI Conference on Artificial Intelligence 2023.
115 DSGN++
This method uses stereo information.
code 43.90 % 62.82 % 39.21 % 0.2 s GeForce RTX 2080Ti
Y. Chen, S. Huang, S. Liu, B. Yu and J. Jia: DSGN++: Exploiting Visual-Spatial Relation for Stereo-Based 3D Detectors. IEEE Transactions on Pattern Analysis and Machine Intelligence 2022.
116 AVOD
This method makes use of Velodyne laser scans.
code 42.08 % 57.19 % 38.29 % 0.08 s Titan X (pascal)
J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander: Joint 3D Proposal Generation and Object Detection from View Aggregation. IROS 2018.
117 SeSame-voxel w/score code 40.05 % 53.37 % 35.71 % N/A s GPU @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
118 SparsePool code 37.33 % 52.61 % 33.39 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
119 MMLAB LIGA-Stereo
This method uses stereo information.
code 36.86 % 54.44 % 32.06 % 0.4 s 1 core @ 2.5 Ghz (Python + C/C++)
X. Guo, S. Shi, X. Wang and H. Li: LIGA-Stereo: Learning LiDAR Geometry Aware Representations for Stereo-based 3D Detector. Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) 2021.
120 CPD++(unsupervised) code 33.84 % 50.49 % 29.35 % 0.1 s GPU @ >3.5 Ghz (Python)
121 SparsePool code 32.61 % 40.87 % 29.05 % 0.13 s 8 cores @ 2.5 Ghz (Python)
Z. Wang, W. Zhan and M. Tomizuka: Fusing bird view lidar point cloud and front view camera image for deep object detection. arXiv preprint arXiv:1711.06703 2017.
122 CG-Stereo
This method uses stereo information.
30.89 % 47.40 % 27.23 % 0.57 s GeForce RTX 2080 Ti
C. Li, J. Ku and S. Waslander: Confidence Guided Stereo 3D Object Detection with Split Depth Estimation. IROS 2020.
123 BirdNet
This method makes use of Velodyne laser scans.
30.25 % 43.98 % 27.21 % 0.11 s Titan Xp (Caffe)
J. Beltrán, C. Guindel, F. Moreno, D. Cruzado, F. García and A. Escalera: BirdNet: A 3D Object Detection Framework from LiDAR Information. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
124 Disp R-CNN (velo)
This method uses stereo information.
code 24.40 % 40.05 % 21.12 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
125 Disp R-CNN
This method uses stereo information.
code 24.40 % 40.04 % 21.12 % 0.387 s GPU @ 2.5 Ghz (Python + C/C++)
J. Sun, L. Chen, Y. Xie, S. Zhang, Q. Jiang, X. Zhou and H. Bao: Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance Disparity Estimation. CVPR 2020.
126 DDStereo
This method uses stereo information.
21.80 % 34.59 % 18.59 % 0.02 s GPU @ 2.5 Ghz (Python)
127 Complexer-YOLO
This method makes use of Velodyne laser scans.
18.53 % 24.27 % 17.31 % 0.06 s GPU @ 3.5 Ghz (C/C++)
M. Simon, K. Amende, A. Kraus, J. Honer, T. Samann, H. Kaulbersch, S. Milz and H. Michael Gross: Complexer-YOLO: Real-Time 3D Object Detection and Tracking on Semantic Point Clouds. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2019.
128 DSGN
This method uses stereo information.
code 18.17 % 27.76 % 16.21 % 0.67 s NVIDIA Tesla V100
Y. Chen, S. Liu, X. Shen and J. Jia: DSGN: Deep Stereo Geometry Network for 3D Object Detection. CVPR 2020.
129 OC Stereo
This method uses stereo information.
code 16.63 % 29.40 % 14.72 % 0.35 s 1 core @ 2.5 Ghz (Python + C/C++)
A. Pon, J. Ku, C. Li and S. Waslander: Object-Centric Stereo Matching for 3D Object Detection. ICRA 2020.
130 SeSame-pillar w/scor code 14.29 % 11.47 % 12.57 % N/A s 1 core @ 2.5 Ghz (C/C++)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
131 RT3D-GMP
This method uses stereo information.
12.99 % 18.31 % 10.63 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
H. Königshof and C. Stiller: Learning-Based Shape Estimation with Grid Map Patches for Realtime 3D Object Detection for Automated Driving. 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
132 SeSame-point w/score code 8.31 % 9.99 % 6.87 % N/A s 1 core @ 1.5 Ghz (Python)
H. O, C. Yang and K. Huh: SeSame: Simple, Easy 3D Object Detection with Point-Wise Semantics. Proceedings of the Asian Conference on Computer Vision (ACCV) 2024.
133 ESGN
This method uses stereo information.
7.69 % 13.84 % 6.75 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
A. Gao, Y. Pang, J. Nie, Z. Shao, J. Cao, Y. Guo and X. Li: ESGN: Efficient Stereo Geometry Network for Fast 3D Object Detection. IEEE Transactions on Circuits and Systems for Video Technology 2022.
134 CMKD code 6.67 % 12.52 % 6.34 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Y. Hong, H. Dai and Y. Ding: Cross-Modality Knowledge Distillation Network for Monocular 3D Object Detection. ECCV 2022.
135 PS-fld code 6.18 % 11.22 % 5.21 % 0.25 s 1 core @ 2.5 Ghz (C/C++)
Y. Chen, H. Dai and Y. Ding: Pseudo-Stereo for Monocular 3D Object Detection in Autonomous Driving. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
136 MonOri code 5.87 % 9.47 % 5.35 % 0.03 s 4 cores @ 2.5 Ghz (Python)
H. Yao, P. Han, J. Chen, Z. Wang, Y. Qiu, X. Wang, Y. wang, X. Chai, C. Cao and W. Jin: MonOri: Orientation-Guided PnP for Monocular 3-D Object Detection. IEEE Transactions on Neural Networks and Learning Systems 2025.
137 MDD-M3D-X 5.48 % 9.28 % 4.70 % 0.01 s 1 core @ 2.5 Ghz (Python)
138 MonoLSPF 5.37 % 8.75 % 4.67 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
139 MonoLiG code 5.24 % 8.14 % 4.45 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
A. Hekimoglu, M. Schmidt and A. Ramiro: Monocular 3D Object Detection with LiDAR Guided Semi Supervised Active Learning. 2023.
140 DA3D+KM3D+v2-99 code 5.11 % 8.58 % 4.48 % 0.120s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
141 Mix-Teaching code 4.91 % 8.04 % 4.15 % 30 s 1 core @ 2.5 Ghz (C/C++)
L. Yang, X. Zhang, L. Wang, M. Zhu, C. Zhang and J. Li: Mix-Teaching: A Simple, Unified and Effective Semi-Supervised Learning Framework for Monocular 3D Object Detection. ArXiv 2022.
142 fdaa11 4.79 % 8.03 % 4.13 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
143 DD3D code 4.79 % 7.52 % 4.22 % n/a s 1 core @ 2.5 Ghz (C/C++)
D. Park, R. Ambrus, V. Guizilini, J. Li and A. Gaidon: Is Pseudo-Lidar needed for Monocular 3D Object detection?. IEEE/CVF International Conference on Computer Vision (ICCV) .
144 MonoGeo code 4.78 % 8.08 % 3.96 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
145 MonoPSR code 4.74 % 8.37 % 3.68 % 0.2 s GPU @ 3.5 Ghz (Python)
J. Ku*, A. Pon* and S. Waslander: Monocular 3D Object Detection Leveraging Accurate Proposals and Shape Reconstruction. CVPR 2019.
146 MonoMH code 4.62 % 7.32 % 4.23 % 0.04 s 1 core @ 2.5 Ghz (Python)
147 PS-SVDM 4.57 % 7.98 % 3.66 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
148 TopNet-UncEst
This method makes use of Velodyne laser scans.
4.54 % 7.13 % 3.81 % 0.09 s NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, M. Braun, M. Lauer and C. Stiller: Capturing Object Detection Uncertainty in Multi-Layer Grid Maps. 2019.
149 CPD(unsupervised) code 4.43 % 6.75 % 3.84 % 0.1 s GPU @ >3.5 Ghz (Python + C/C++)
H. Wu, S. Zhao, X. Huang, C. Wen, X. Li and C. Wang: Commonsense Prototype for Outdoor Unsupervised 3D Object Detection. CVPR 2024.
150 LPCG-Monoflex code 4.38 % 6.98 % 3.56 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
L. Peng, F. Liu, Z. Yu, S. Yan, D. Deng, Z. Yang, H. Liu and D. Cai: Lidar Point Cloud Guided Monocular 3D Object Detection. ECCV 2022.
151 MonoLSS 4.34 % 7.23 % 3.92 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, J. Jia and Y. Shi: MonoLSS: Learnable Sample Selection For Monocular 3D Detection. International Conference on 3D Vision 2024.
152 MonoCoP 4.32 % 7.23 % 4.09 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
153 MonoUNI code 4.28 % 7.34 % 3.78 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Jia, Z. Li and Y. Shi: MonoUNI: A Unified Vehicle and Infrastructure-side Monocular 3D Object Detection Network with Sufficient Depth Clues. Thirty-seventh Conference on Neural Information Processing Systems 2023.
154 MonoAFKD 4.27 % 7.11 % 3.87 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
155 Plane-Constraints code 4.22 % 7.72 % 3.36 % 0.05 s 4 cores @ 3.0 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, X. Chai, Y. Qiu and P. Han: Vertex points are not enough: Monocular 3D object detection via intra-and inter-plane constraints. Neural Networks 2023.
156 IDEAL-M3D 60% 4.12 % 6.93 % 3.71 % 0.04 s 1 core @ 2.5 Ghz (Python)
157 MonoHPE-Mask 4.10 % 7.40 % 4.21 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
158 AMNet code 4.03 % 6.53 % 3.31 % 0.03 s GPU @ 1.0 Ghz (Python)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
159 MonoDDE 3.78 % 5.94 % 3.33 % 0.04 s 1 core @ 2.5 Ghz (Python)
Z. Li, Z. Qu, Y. Zhou, J. Liu, H. Wang and L. Jiang: Diversity Matters: Fully Exploiting Depth Clues for Reliable Monocular 3D Object Detection. CVPR 2022.
160 DFR-Net 3.58 % 5.69 % 3.10 % 0.18 s 1080 Ti (Pytorch)
Z. Zou, X. Ye, L. Du, X. Cheng, X. Tan, L. Zhang, J. Feng, X. Xue and E. Ding: The devil is in the task: Exploiting reciprocal appearance-localization features for monocular 3d object detection . ICCV 2021.
161 MonoCLUE 3.50 % 5.58 % 3.07 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
162 HomoLoss(monoflex) code 3.50 % 5.48 % 2.99 % 0.04 s 1 core @ 2.5 Ghz (Python)
J. Gu, B. Wu, L. Fan, J. Huang, S. Cao, Z. Xiang and X. Hua: Homography Loss for Monocular 3D Object Detection. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2022.
163 OPA-3D code 3.45 % 5.16 % 2.86 % 0.04 s 1 core @ 3.5 Ghz (Python)
Y. Su, Y. Di, G. Zhai, F. Manhardt, J. Rambach, B. Busam, D. Stricker and F. Tombari: OPA-3D: Occlusion-Aware Pixel-Wise Aggregation for Monocular 3D Object Detection. IEEE Robotics and Automation Letters 2023.
164 CaDDN code 3.41 % 7.00 % 3.30 % 0.63 s GPU @ 2.5 Ghz (Python)
C. Reading, A. Harakeh, J. Chae and S. Waslander: Categorical Depth Distribution Network for Monocular 3D Object Detection. CVPR 2021.
165 RT3DStereo
This method uses stereo information.
3.37 % 5.29 % 2.57 % 0.08 s GPU @ 2.5 Ghz (C/C++)
H. Königshof, N. Salscheider and C. Stiller: Realtime 3D Object Detection for Automated Driving Using Stereo Vision and Semantic Information. Proc. IEEE Intl. Conf. Intelligent Transportation Systems 2019.
166 MonoFRD 3.33 % 6.38 % 3.12 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
Z. Gong, Y. Zhao, F. Zhang, G. Gui, B. Chen, L. Yu, H. Wang, C. Yang and W. Gui: Color intuitive feature guided depth-height fusion and volume rendering for monocular 3D object detection. IEEE Transactions on Intelligent Vehicles(Major Revison) 2024.
167 MonoDTR 3.27 % 5.05 % 3.19 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
K. Huang, T. Wu, H. Su and W. Hsu: MonoDTR: Monocular 3D Object Detection with Depth-Aware Transformer. CVPR 2022.
168 GUPNet code 3.21 % 5.58 % 2.66 % NA s 1 core @ 2.5 Ghz (Python + C/C++)
Y. Lu, X. Ma, L. Yang, T. Zhang, Y. Liu, Q. Chu, J. Yan and W. Ouyang: Geometry Uncertainty Projection Network for Monocular 3D Object Detection. arXiv preprint arXiv:2107.13774 2021.
169 MonoCLUE_all 3.20 % 5.93 % 2.94 % 0.05 s 1 core @ 2.5 Ghz (C/C++)
170 AM 3.19 % 5.30 % 3.21 % 0.04 s 1 core @ 2.5 Ghz (C/C++)
171 DEVIANT code 3.13 % 5.05 % 2.59 % 0.04 s 1 GPU (Python)
A. Kumar, G. Brazil, E. Corona, A. Parchami and X. Liu: DEVIANT: Depth EquiVarIAnt NeTwork for Monocular 3D Object Detection. European Conference on Computer Vision (ECCV) 2022.
172 CIE 3.09 % 5.62 % 2.80 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
Anonymities: Consistency of Implicit and Explicit Features Matters for Monocular 3D Object Detection. arXiv preprint arXiv:2207.07933 2022.
173 UniCuboid 3.00 % 5.29 % 2.56 % 0.1 s 1 core @ 2.5 Ghz (C/C++)
174 SGM3D code 2.92 % 5.49 % 2.64 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
Z. Zhou, L. Du, X. Ye, Z. Zou, X. Tan, L. Zhang, X. Xue and J. Feng: SGM3D: Stereo Guided Monocular 3D Object Detection. RA-L 2022.
175 PS-SVDM 2.92 % 5.56 % 2.36 % 1 s 1 core @ 2.5 Ghz (Python)
Y. Shi: SVDM: Single-View Diffusion Model for Pseudo-Stereo 3D Object Detection. arXiv preprint arXiv:2307.02270 2023.
176 AMNet+DDAD15M code 2.79 % 4.30 % 2.51 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
H. Pan, Y. Jia, J. Wang and W. Sun: MonoAMNet: Three-Stage Real-Time Monocular 3D Object Detection With Adaptive Methods. IEEE Transactions on Intelligent Transportation Systems 2025.
177 MonoHPE 2.77 % 4.60 % 2.93 % 0.04 s 1 core @ 2.5 Ghz (Python)
178 MonOAPC 2.74 % 4.46 % 2.14 % 0035 s 1 core @ 2.5 Ghz (Python)
H. Yao, J. Chen, Z. Wang, X. Wang, P. Han, X. Chai and Y. Qiu: Occlusion-Aware Plane-Constraints for Monocular 3D Object Detection. IEEE Transactions on Intelligent Transportation Systems 2023.
179 MDSNet 2.68 % 5.37 % 2.22 % 0.05 s 1 core @ 2.5 Ghz (Python)
Z. Xie, Y. Song, J. Wu, Z. Li, C. Song and Z. Xu: MDS-Net: Multi-Scale Depth Stratification 3D Object Detection from Monocular Images. Sensors 2022.
180 Cube R-CNN code 2.67 % 3.65 % 2.28 % 0.05 s GPU @ 2.5 Ghz (Python)
G. Brazil, A. Kumar, J. Straub, N. Ravi, J. Johnson and G. Gkioxari: Omni3D: A Large Benchmark and Model for 3D Object Detection in the Wild. CVPR 2023.
181 temp 2.67 % 4.70 % 2.36 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
182 monodle code 2.66 % 4.59 % 2.45 % 0.04 s GPU @ 2.5 Ghz (Python)
X. Ma, Y. Zhang, D. Xu, D. Zhou, S. Yi, H. Li and W. Ouyang: Delving into Localization Errors for Monocular 3D Object Detection. CVPR 2021 .
183 DDMP-3D 2.50 % 4.18 % 2.32 % 0.18 s 1 core @ 2.5 Ghz (Python)
L. Wang, L. Du, X. Ye, Y. Fu, G. Guo, X. Xue, J. Feng and L. Zhang: Depth-conditioned Dynamic Message Propagation for Monocular 3D Object Detection. CVPR 2020.
184 MonoNeRD code 2.48 % 4.73 % 2.16 % na s 1 core @ 2.5 Ghz (Python)
J. Xu, L. Peng, H. Cheng, H. Li, W. Qian, K. Li, W. Wang and D. Cai: MonoNeRD: NeRF-like Representations for Monocular 3D Object Detection. ICCV 2023.
185 Aug3D-RPN 2.43 % 4.36 % 2.55 % 0.08 s 1 core @ 2.5 Ghz (C/C++)
C. He, J. Huang, X. Hua and L. Zhang: Aug3D-RPN: Improving Monocular 3D Object Detection by Synthetic Images with Virtual Depth. 2021.
186 QD-3DT
This is an online method (no batch processing).
code 2.39 % 4.16 % 1.85 % 0.03 s GPU @ 2.5 Ghz (Python)
H. Hu, Y. Yang, T. Fischer, F. Yu, T. Darrell and M. Sun: Monocular Quasi-Dense 3D Object Tracking. ArXiv:2103.07351 2021.
187 MonoFlex 2.35 % 4.17 % 2.04 % 0.03 s GPU @ 2.5 Ghz (Python)
Y. Zhang, J. Lu and J. Zhou: Objects are Different: Flexible Monocular 3D Object Detection. CVPR 2021.
188 mdab 2.31 % 4.19 % 2.01 % 0.02 s 1 core @ 2.5 Ghz (Python)
189 MonoPair 2.12 % 3.79 % 1.83 % 0.06 s GPU @ 2.5 Ghz (Python + C/C++)
Y. Chen, L. Tai, K. Sun and M. Li: MonoPair: Monocular 3D Object Detection Using Pairwise Spatial Relationships. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020.
190 DA3D code 1.86 % 3.37 % 1.48 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
191 RefinedMPL 1.82 % 3.23 % 1.77 % 0.15 s GPU @ 2.5 Ghz (Python + C/C++)
J. Vianney, S. Aich and B. Liu: RefinedMPL: Refined Monocular PseudoLiDAR for 3D Object Detection in Autonomous Driving. arXiv preprint arXiv:1911.09712 2019.
192 MonoRCNN++ code 1.81 % 3.17 % 1.75 % 0.07 s GPU @ 2.5 Ghz (Python)
X. Shi, Z. Chen and T. Kim: Multivariate Probabilistic Monocular 3D Object Detection. WACV 2023.
193 TopNet-HighRes
This method makes use of Velodyne laser scans.
1.67 % 2.49 % 1.88 % 101ms NVIDIA GeForce 1080 Ti (tensorflow-gpu)
S. Wirges, T. Fischer, C. Stiller and J. Frias: Object Detection and Classification in Occupancy Grid Maps Using Deep Convolutional Networks. 2018 21st International Conference on Intelligent Transportation Systems (ITSC) 2018.
194 D4LCN code 1.67 % 2.45 % 1.36 % 0.2 s GPU @ 2.5 Ghz (Python + C/C++)
M. Ding, Y. Huo, H. Yi, Z. Wang, J. Shi, Z. Lu and P. Luo: Learning Depth-Guided Convolutions for Monocular 3D Object Detection. CVPR 2020.
195 FMF-occlusion-net 1.60 % 1.87 % 1.66 % 0.16 s 1 core @ 2.5 Ghz (Python + C/C++)
H. Liu, H. Liu, Y. Wang, F. Sun and W. Huang: Fine-grained Multi-level Fusion for Anti- occlusion Monocular 3D Object Detection. IEEE Transactions on Image Processing 2022.
196 monospb 1.54 % 2.55 % 1.21 % 0.01 s 1 core @ 2.5 Ghz (Python)
197 SS3D 1.45 % 2.80 % 1.35 % 48 ms Tesla V100 (Python)
E. Jörgensen, C. Zach and F. Kahl: Monocular 3D Object Detection and Box Fitting Trained End-to-End Using Intersection-over-Union Loss. CoRR 2019.
198 PGD-FCOS3D code 1.38 % 2.81 % 1.20 % 0.03 s 1 core @ 2.5 Ghz (C/C++)
T. Wang, X. Zhu, J. Pang and D. Lin: Probabilistic and Geometric Depth: Detecting Objects in Perspective. Conference on Robot Learning (CoRL) 2021.
199 DA3D+KM3D code 1.37 % 2.79 % 1.32 % 0.02 s GPU @ 2.5 Ghz (Python)
Y. Jia, J. Wang, H. Pan and W. Sun: Enhancing Monocular 3-D Object Detection Through Data Augmentation Strategies. IEEE Transactions on Instrumentation and Measurement 2024.
200 CMAN 1.05 % 1.59 % 1.11 % 0.15 s 1 core @ 2.5 Ghz (Python)
C. Yuanzhouhan Cao: CMAN: Leaning Global Structure Correlation for Monocular 3D Object Detection. IEEE Trans. Intell. Transport. Syst. 2022.
201 MonoEF 0.92 % 1.80 % 0.71 % 0.03 s 1 core @ 2.5 Ghz (Python)
Y. Zhou, Y. He, H. Zhu, C. Wang, H. Li and Q. Jiang: Monocular 3D Object Detection: An Extrinsic Parameter Free Approach. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
202 M3D-RPN code 0.65 % 0.94 % 0.47 % 0.16 s GPU @ 1.5 Ghz (Python)
G. Brazil and X. Liu: M3D-RPN: Monocular 3D Region Proposal Network for Object Detection . ICCV 2019 .
203 MonoRUn code 0.61 % 1.01 % 0.48 % 0.07 s GPU @ 2.5 Ghz (Python + C/C++)
H. Chen, Y. Huang, W. Tian, Z. Gao and L. Xiong: MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2021.
204 Shift R-CNN (mono) code 0.29 % 0.48 % 0.31 % 0.25 s GPU @ 1.5 Ghz (Python)
A. Naiden, V. Paunescu, G. Kim, B. Jeon and M. Leordeanu: Shift R-CNN: Deep Monocular 3D Object Detection With Closed-form Geometric Constraints. ICIP 2019.
205 GATE3D code 0.00 % 0.00 % 0.00 % 0.01 s 1 core @ 2.5 Ghz (C/C++)
206 mBoW
This method makes use of Velodyne laser scans.
0.00 % 0.00 % 0.00 % 10 s 1 core @ 2.5 Ghz (C/C++)
J. Behley, V. Steinhage and A. Cremers: Laser-based Segment Classification Using a Mixture of Bag-of-Words. Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
Table as LaTeX | Only published Methods

Related Datasets

Citation

When using this dataset in your research, we will be happy if you cite us:
@inproceedings{Geiger2012CVPR,
  author = {Andreas Geiger and Philip Lenz and Raquel Urtasun},
  title = {Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)},
  year = {2012}
}



eXTReMe Tracker