From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
70.86 % |
82.65 % |
72.15 % |
86.26 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
81.02 % |
92.95 % |
86.57 % |
30885 |
2344 |
7235 |
21.07 % |
38918 |
937 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
58.00 % |
34.15 % |
7.85 % |
443 |
975 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.