From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
75.39 % |
79.25 % |
75.87 % |
83.63 % |
PEDESTRIAN |
43.37 % |
71.44 % |
43.86 % |
92.43 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
80.32 % |
96.92 % |
87.84 % |
29985 |
954 |
7345 |
8.58 % |
33605 |
1457 |
PEDESTRIAN |
49.12 % |
90.63 % |
63.71 % |
11408 |
1179 |
11818 |
10.60 % |
13739 |
712 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
49.85 % |
39.85 % |
10.31 % |
165 |
660 |
PEDESTRIAN |
13.75 % |
51.55 % |
34.71 % |
112 |
901 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.