From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
88.97 % |
87.25 % |
89.42 % |
89.81 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
95.45 % |
95.37 % |
95.41 % |
37810 |
1837 |
1802 |
16.51 % |
45438 |
1104 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
86.92 % |
11.38 % |
1.69 % |
154 |
369 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.