From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
77.63 % |
77.80 % |
77.81 % |
82.60 % |
PEDESTRIAN |
43.76 % |
70.48 % |
44.08 % |
91.83 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
83.35 % |
96.27 % |
89.34 % |
31997 |
1239 |
6393 |
11.14 % |
37084 |
1105 |
PEDESTRIAN |
53.97 % |
84.94 % |
66.01 % |
12569 |
2228 |
10718 |
20.03 % |
16844 |
437 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
56.31 % |
35.23 % |
8.46 % |
62 |
539 |
PEDESTRIAN |
20.62 % |
45.02 % |
34.36 % |
73 |
809 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.