From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
89.44 % |
85.15 % |
89.81 % |
87.91 % |
PEDESTRIAN |
56.20 % |
74.54 % |
56.59 % |
92.11 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
91.76 % |
99.17 % |
95.32 % |
35706 |
299 |
3207 |
2.69 % |
47845 |
1168 |
PEDESTRIAN |
66.05 % |
87.88 % |
75.42 % |
15413 |
2126 |
7923 |
19.11 % |
24128 |
561 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
78.62 % |
17.54 % |
3.85 % |
125 |
415 |
PEDESTRIAN |
32.30 % |
42.27 % |
25.43 % |
90 |
854 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.