From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
86.41 % |
85.82 % |
86.73 % |
88.70 % |
PEDESTRIAN |
52.98 % |
73.41 % |
55.09 % |
91.61 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
90.44 % |
97.79 % |
93.97 % |
35588 |
804 |
3761 |
7.23 % |
40958 |
1450 |
PEDESTRIAN |
64.49 % |
87.86 % |
74.38 % |
15091 |
2086 |
8311 |
18.75 % |
19571 |
1436 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
75.38 % |
22.15 % |
2.46 % |
108 |
553 |
PEDESTRIAN |
32.30 % |
49.14 % |
18.56 % |
488 |
1393 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.