From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
88.10 % |
86.58 % |
88.11 % |
89.58 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
92.15 % |
96.95 % |
94.49 % |
35045 |
1103 |
2985 |
9.92 % |
40694 |
810 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
79.23 % |
15.38 % |
5.38 % |
5 |
330 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.