From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
PEDESTRIAN |
60.12 % |
71.09 % |
62.13 % |
90.68 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
PEDESTRIAN |
78.38 % |
83.35 % |
80.79 % |
18430 |
3681 |
5085 |
33.09 % |
27343 |
997 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
PEDESTRIAN |
52.92 % |
37.11 % |
9.97 % |
466 |
1296 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.