From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
PEDESTRIAN |
56.69 % |
75.51 % |
57.02 % |
92.55 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
PEDESTRIAN |
61.16 % |
94.21 % |
74.17 % |
14284 |
878 |
9072 |
7.89 % |
15972 |
396 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
PEDESTRIAN |
31.62 % |
35.74 % |
32.65 % |
76 |
522 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.