From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
84.80 % |
85.10 % |
84.90 % |
88.17 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
87.94 % |
98.25 % |
92.81 % |
33532 |
597 |
4597 |
5.37 % |
37694 |
1493 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
68.46 % |
22.46 % |
9.08 % |
35 |
444 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.