From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
57.03 % |
78.84 % |
57.08 % |
84.17 % |
PEDESTRIAN |
33.13 % |
68.45 % |
33.20 % |
91.83 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
58.63 % |
99.48 % |
73.78 % |
20764 |
109 |
14653 |
0.98 % |
22746 |
1009 |
PEDESTRIAN |
40.32 % |
85.27 % |
54.75 % |
9357 |
1616 |
13849 |
14.53 % |
12618 |
602 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
26.92 % |
46.46 % |
26.62 % |
17 |
461 |
PEDESTRIAN |
9.62 % |
43.64 % |
46.74 % |
16 |
717 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.