From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
90.67 % |
85.46 % |
91.99 % |
88.09 % |
PEDESTRIAN |
64.41 % |
75.24 % |
66.98 % |
92.02 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
94.25 % |
98.61 % |
96.38 % |
36702 |
517 |
2239 |
4.65 % |
47313 |
2595 |
PEDESTRIAN |
75.27 % |
90.47 % |
82.17 % |
17613 |
1855 |
5788 |
16.68 % |
23795 |
1561 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
86.46 % |
11.23 % |
2.31 % |
454 |
659 |
PEDESTRIAN |
48.80 % |
37.80 % |
13.40 % |
596 |
1195 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.