From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
57.85 % |
77.64 % |
57.87 % |
83.11 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
59.88 % |
98.76 % |
74.56 % |
21226 |
266 |
14222 |
2.39 % |
23957 |
1135 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
29.38 % |
46.31 % |
24.31 % |
7 |
704 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.