From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
76.15 % |
83.42 % |
77.01 % |
86.73 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
80.23 % |
98.09 % |
88.27 % |
29736 |
578 |
7328 |
5.20 % |
33287 |
2094 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
60.00 % |
31.69 % |
8.31 % |
296 |
868 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.