From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
86.62 % |
83.97 % |
87.48 % |
87.38 % |
PEDESTRIAN |
58.15 % |
71.93 % |
58.74 % |
91.37 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
90.50 % |
97.99 % |
94.10 % |
34322 |
705 |
3602 |
6.34 % |
39605 |
926 |
PEDESTRIAN |
64.12 % |
92.61 % |
75.77 % |
14936 |
1192 |
8359 |
10.72 % |
18482 |
373 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
72.46 % |
20.77 % |
6.77 % |
293 |
501 |
PEDESTRIAN |
30.58 % |
45.36 % |
24.05 % |
138 |
818 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.