From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
PEDESTRIAN |
46.92 % |
71.84 % |
47.77 % |
90.72 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
PEDESTRIAN |
70.27 % |
76.14 % |
73.08 % |
16415 |
5145 |
6946 |
46.25 % |
26138 |
784 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
PEDESTRIAN |
42.96 % |
46.39 % |
10.65 % |
196 |
1151 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.