From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
90.03 % |
84.32 % |
90.29 % |
87.18 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
92.62 % |
98.77 % |
95.60 % |
36258 |
451 |
2887 |
4.05 % |
49307 |
2330 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
82.62 % |
15.08 % |
2.31 % |
90 |
501 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.