From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
66.60 % |
78.17 % |
66.64 % |
83.06 % |
PEDESTRIAN |
36.93 % |
67.75 % |
37.08 % |
91.28 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
69.21 % |
98.05 % |
81.14 % |
24686 |
492 |
10981 |
4.42 % |
28775 |
745 |
PEDESTRIAN |
46.96 % |
82.91 % |
59.96 % |
10905 |
2248 |
12318 |
20.21 % |
15795 |
284 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
41.08 % |
33.69 % |
25.23 % |
13 |
150 |
PEDESTRIAN |
17.87 % |
39.52 % |
42.61 % |
34 |
789 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.