From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
85.54 % |
85.52 % |
86.58 % |
88.52 % |
PEDESTRIAN |
47.87 % |
64.89 % |
48.81 % |
88.98 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
92.76 % |
94.40 % |
93.57 % |
33587 |
1991 |
2623 |
17.90 % |
42713 |
2147 |
PEDESTRIAN |
63.04 % |
81.96 % |
71.27 % |
14695 |
3234 |
8616 |
29.07 % |
21166 |
1182 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
82.00 % |
15.85 % |
2.15 % |
358 |
857 |
PEDESTRIAN |
29.90 % |
51.20 % |
18.90 % |
219 |
1348 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.