From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
72.69 % |
78.75 % |
73.02 % |
83.34 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
80.61 % |
94.10 % |
86.84 % |
30605 |
1918 |
7360 |
17.24 % |
35945 |
2520 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
48.77 % |
42.46 % |
8.77 % |
114 |
858 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.