From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
91.73 % |
85.90 % |
92.47 % |
88.59 % |
PEDESTRIAN |
67.33 % |
73.83 % |
69.07 % |
91.56 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
94.82 % |
98.53 % |
96.64 % |
37241 |
556 |
2033 |
5.00 % |
46255 |
939 |
PEDESTRIAN |
77.17 % |
90.88 % |
83.47 % |
18072 |
1813 |
5347 |
16.30 % |
23735 |
383 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
87.08 % |
10.62 % |
2.31 % |
255 |
380 |
PEDESTRIAN |
52.23 % |
34.36 % |
13.40 % |
403 |
1077 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.