From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
88.65 % |
85.70 % |
89.04 % |
88.21 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
91.33 % |
98.68 % |
94.86 % |
34805 |
465 |
3306 |
4.18 % |
40012 |
1463 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
78.92 % |
18.92 % |
2.15 % |
133 |
582 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.