From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
85.70 % |
85.48 % |
85.98 % |
88.42 % |
PEDESTRIAN |
46.33 % |
72.54 % |
47.82 % |
91.78 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
89.51 % |
97.81 % |
93.48 % |
34556 |
772 |
4049 |
6.94 % |
39939 |
1308 |
PEDESTRIAN |
56.25 % |
87.27 % |
68.40 % |
13076 |
1908 |
10172 |
17.15 % |
16669 |
858 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
71.85 % |
24.15 % |
4.00 % |
98 |
372 |
PEDESTRIAN |
23.37 % |
47.77 % |
28.87 % |
345 |
1111 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.