From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
85.31 % |
85.52 % |
86.49 % |
88.57 % |
PEDESTRIAN |
47.25 % |
64.87 % |
48.29 % |
88.92 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
92.67 % |
94.40 % |
93.53 % |
33554 |
1990 |
2655 |
17.89 % |
42674 |
1686 |
PEDESTRIAN |
63.58 % |
80.99 % |
71.24 % |
14823 |
3480 |
8491 |
31.28 % |
21750 |
1407 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
81.38 % |
16.31 % |
2.31 % |
408 |
900 |
PEDESTRIAN |
30.24 % |
51.20 % |
18.56 % |
241 |
1375 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.