From all 29 test sequences, our benchmark computes the commonly used tracking metrics CLEARMOT, MT/PT/ML, identity switches, and fragmentations [1,2].
The tables below show all of these metrics.
Benchmark |
MOTA |
MOTP |
MODA |
MODP |
CAR |
45.92 % |
78.25 % |
45.98 % |
84.96 % |
Benchmark |
recall |
precision |
F1 |
TP |
FP |
FN |
FAR |
#objects |
#trajectories |
CAR |
47.06 % |
99.70 % |
63.94 % |
16473 |
49 |
18528 |
0.44 % |
17348 |
1009 |
Benchmark |
MT |
PT |
ML |
IDS |
FRAG |
CAR |
14.92 % |
47.85 % |
37.23 % |
21 |
581 |
This table as LaTeX
|
[1] K. Bernardin, R. Stiefelhagen:
Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics. JIVP 2008.
[2] Y. Li, C. Huang, R. Nevatia:
Learning to associate: HybridBoosted multi-target tracker for crowded scene. CVPR 2009.