Method
Setting
Code
Out-Noc
Out-All
Avg-Noc
Avg-All
Density
Runtime
Environment
1
MambaGaze-Stereo
code
0.84 %
1.09 %
0.4 px
0.4 px
100.00 %
0.61 s
GPU @ 1.5 Ghz (Python)
2
MonSter
0.84 %
1.09 %
0.4 px
0.4 px
100.00 %
0.45 s
1 core @ 2.5 Ghz (Python)
3
NMRF-Stereo-SwinT
code
0.92 %
1.20 %
0.4 px
0.4 px
100.00 %
0.11 s
NVIDIA RTX 3090 (PyTorch)
4
ViTAStereo
code
0.93 %
1.16 %
0.4 px
0.4 px
100.00 %
0.22 s
NVIDIA RTX 4090 (PyTorch)
C. Liu, Q. Chen and R. Fan: Playing to Vision Foundation Model's
Strengths in Stereo Matching . IEEE Transactions on Intelligent
Vehicles 2024.
5
DEFOM-Stereo
0.94 %
1.18 %
0.3 px
0.4 px
100.00 %
0.30 s
1 core @ 2.5 Ghz (Python)
6
GIP-Stereo
0.95 %
1.25 %
0.4 px
0.4 px
100.00 %
0.39 s
1 core @ 2.5 Ghz (C/C++)
7
GANet+ADL
code
0.98 %
1.29 %
0.4 px
0.5 px
100.00 %
0.67 s
NVIDIA RTX 3090 (PyTorch)
P. Xu, Z. Xiang, C. Qiao, J. Fu and T. Pu: Adaptive Multi-Modal Cross-Entropy Loss for
Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024.
8
RiskMin
1.00 %
1.44 %
0.4 px
0.5 px
100.00 %
0.20 s
GPU @ 2.5 Ghz (Python)
C. Liu, S. Kumar, S. Gu, R. Timofte, Y. Yao and L. Gool: Stereo Risk: A Continuous Modeling Approach to Stereo Matching . Forty-first International Conference on Machine Learning (ICML 2024) 2024.
9
StereoBase
code
1.00 %
1.26 %
0.4 px
0.4 px
100.00 %
0.29 s
GPU @ 1.5 Ghz (Python)
X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen: OpenStereo: A Comprehensive Benchmark for
Stereo Matching and Strong Baseline . arXiv preprint arXiv:2312.00343 2023.
10
IMC-Stereo
1.01 %
1.35 %
0.4 px
0.4 px
100.00 %
0.48 s
1 core @ 2.5 Ghz (C/C++)
11
NMRF-Stereo
code
1.01 %
1.35 %
0.4 px
0.4 px
100.00 %
0.09 s
NVIDIA RTX 3090 (PyTorch)
T. Guan, C. Wang and Y. Liu: Neural Markov Random Field for Stereo Matching . Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition 2024.
12
DN+ACVNet
1.02 %
1.41 %
0.4 px
0.5 px
100.00 %
0.24 s
1 core @ 2.5 Ghz (C/C++)
J. Zhang, L. Huang, X. Bai, J. Zheng, L. Gu and E. Hancock: Exploring the Usage of Pre-trained
Features for Stereo Matching . International Journal of Computer
Vision 2024.
13
WiCRI_STEREO
1.03 %
1.34 %
0.4 px
0.5 px
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
14
MVACVNet
1.03 %
1.34 %
0.4 px
0.5 px
100.00 %
0.01 s
GPU @ 2.5 Ghz (Python)
15
Ms_Igev
1.03 %
1.33 %
0.4 px
0.4 px
100.00 %
0.5 s
GPU @ 2.5 Ghz (Python)
16
PCWNet-SCE
1.03 %
1.35 %
0.4 px
0.5 px
100.00 %
0.44 s
1 core @ 2.5 Ghz (C/C++)
17
UniTT-Stereo
1.03 %
1.25 %
0.4 px
0.4 px
100.00 %
0.46 s
1 core @ 2.5 Ghz (Python)
18
IGEV++
code
1.04 %
1.36 %
0.4 px
0.4 px
100.00 %
0.28 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang: IGEV++: Iterative Multi-range Geometry
Encoding Volumes for Stereo Matching . arXiv preprint arXiv:2409.00638 2024.
19
FF IGEV
1.04 %
1.31 %
0.4 px
0.4 px
100.00 %
0.37 s
GPU @ 2.5 Ghz (Python)
20
Stereo+
1.04 %
1.35 %
0.4 px
0.5 px
100.00 %
0.1 s
GPU @ 2.0 Ghz (Python)
21
MC-Stereo
code
1.04 %
1.34 %
0.4 px
0.4 px
100.00 %
0.40 s
GPU @ 2.5 Ghz (Python)
M. Feng, J. Cheng, H. Jia, L. Liu, G. Xu and X. Yang: MC-Stereo: Multi-peak Lookup and Cascade
Search Range for Stereo Matching . International Conference on 3D Vision
(3DV) 2024.
22
PCWNet
code
1.04 %
1.37 %
0.4 px
0.5 px
100.00 %
0.44 s
1 core @ 2.5 Ghz (C/C++)
Z. Shen, Y. Dai, X. Song, Z. Rao, D. Zhou and L. Zhang: PCW-Net: Pyramid Combination and Warping
Cost Volume for Stereo Matching . European Conference on Computer
Vision(ECCV) 2022.
23
LaC+GANet
code
1.05 %
1.42 %
0.4 px
0.5 px
100.00 %
1.8 s
1 core @ 2.5 Ghz (C/C++)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self-
Reassembling for Deep Stereo Matching Networks . Proceedings of the AAAI Conference on
Artificial Intelligence 2022.
24
UGIA-Selective
1.05 %
1.36 %
0.4 px
0.4 px
100.00 %
0.15 s
1 core @ 2.5 Ghz (C/C++)
25
WCG-NET
1.06 %
1.43 %
0.4 px
0.4 px
100.00 %
0.2 s
1 core @ 2.5 Ghz (C/C++)
26
ICVP
code
1.06 %
1.39 %
0.4 px
0.5 px
100.00 %
0.17 s
GPU @ 1.5 Ghz (Python)
O. Kwon and E. Zell: Image-Coupled Volume Propagation for
Stereo Matching . 2023 IEEE International Conference on
Image Processing (ICIP) 2023.
27
VFM Adapter
1.06 %
1.32 %
0.4 px
0.4 px
100.00 %
1 s
8 cores @ 3.5 Ghz (Python)
28
MoCha-Stereo
code
1.06 %
1.36 %
0.4 px
0.4 px
100.00 %
0.33 s
NVIDIA Tesla A6000 (PyTorch)
Z. Chen, W. Long, H. Yao, Y. Zhang, B. Wang, Y. Qin and J. Wu: MoCha-Stereo: Motif Channel Attention
Network for Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024.
29
Sn-stereo
1.07 %
1.38 %
0.4 px
0.4 px
100.00 %
0.35 s
GPU @ 1.5 Ghz (Python)
30
DMIO
1.07 %
1.38 %
0.4 px
0.4 px
100.00 %
0.3 s
1 core @ 2.5 Ghz (Python)
Y. Shi: Rethinking Iterative Stereo Matching from
Diffusion Bridge Model Perspective . arXiv preprint arXiv:2404.09051 2024.
31
BiPFF
code
1.07 %
1.35 %
0.4 px
0.4 px
100.00 %
0.20 s
1 core @ 2.5 Ghz (C/C++)
32
ls
1.07 %
1.38 %
0.4 px
0.4 px
100.00 %
0.4 s
1 core @ 2.5 Ghz (C/C++)
33
Selective-IGEV
code
1.07 %
1.38 %
0.4 px
0.4 px
100.00 %
0.24 s
1 core @ 2.5 Ghz (Python)
X. Wang, G. Xu, H. Jia and X. Yang: Selective-Stereo: Adaptive Frequency
Information Selection for Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024.
34
IGEVStereo-DCA
1.07 %
1.42 %
0.4 px
0.5 px
100.00 %
0.4 s
1 core @ 2.5 Ghz (C/C++)
35
Wpa2
1.08 %
1.47 %
0.4 px
0.4 px
100.00 %
0.2 s
1 core @ 2.5 Ghz (Python)
36
ESM_Net
code
1.08 %
1.41 %
0.4 px
0.5 px
100.00 %
0.03 s
1 core @ 2.5 Ghz (Python)
37
GeoNet
1.08 %
1.42 %
0.4 px
0.4 px
100.00 %
0.22 s
1 core @ 2.5 Ghz (C/C++)
38
SR Stereo
1.09 %
1.36 %
0.4 px
0.4 px
100.00 %
0.18 s
1 core @ 2.5 Ghz (C/C++)
W. Xiao and W. Zhao: Stepwise Regression and Pre-trained Edge
for Robust Stereo Matching . arXiv preprint arXiv:2406.06953 2024.
39
samstereo
1.09 %
1.42 %
0.4 px
0.4 px
100.00 %
0.32 s
1 core @ 2.5 Ghz (C/C++)
40
UGIA-IGEV
1.09 %
1.37 %
0.4 px
0.4 px
100.00 %
0.15 s
1 core @ 2.5 Ghz (C/C++)
41
EGLCR-Stereo
1.09 %
1.40 %
0.4 px
0.5 px
100.00 %
0.45 s
1 core @ 2.5 Ghz (C/C++)
42
HCR
1.09 %
1.42 %
0.4 px
0.4 px
100.00 %
0.19 s
GPU @ 2.5 Ghz (Python)
Y. Tuming Yuan: Hourglass cascaded recurrent stereo
matching network . Image and Vision computing 2024.
43
UCFNet
code
1.09 %
1.45 %
0.4 px
0.5 px
100.00 %
0.21 s
1 core @ 2.5 Ghz (C/C++)
Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis
and Machine Intelligence 2023.
44
DVANet
1.09 %
1.52 %
0.4 px
0.5 px
100.00 %
0.28 s
NVIDIA 3090 (PyTorch)
45
LoS
1.10 %
1.38 %
0.4 px
0.4 px
100.00 %
0.19 s
1 core @ 2.5 Ghz (Python)
K. Li, L. Wang, Y. Zhang, K. Xue, S. Zhou and Y. Guo: LoS: Local Structure Guided Stereo
Matching . Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR) 2024.
46
ACVNet-DCA
1.10 %
1.43 %
0.4 px
0.5 px
100.00 %
0.2 s
1 core @ 2.5 Ghz (C/C++)
47
Selective-RAFT
code
1.10 %
1.43 %
0.4 px
0.5 px
100.00 %
0.45 s
1 core @ 2.5 Ghz (Python)
X. Wang, G. Xu, H. Jia and X. Yang: Selective-Stereo: Adaptive Frequency
Information Selection for Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024.
48
HART
1.11 %
1.38 %
0.4 px
0.4 px
100.00 %
0.34 s
NVIDIA Tesla A100 (Python)
49
NLCA-Net v2
code
1.11 %
1.46 %
0.4 px
0.5 px
100.00 %
0.67 s
GPU @ >3.5 Ghz (Python)
Z. Rao, D. Yuchao, S. Zhelun and H. Renjie: Rethinking Training Strategy in
Stereo Matching . IEEE TRANSACTIONS ON NEURAL
NETWORKS AND LEARNING SYSTEMS .
50
MAStereo
1.11 %
1.40 %
0.4 px
0.5 px
100.00 %
0.06 s
GPU @ 2.5 Ghz (Python)
51
IGEV-Stereo(32)
code
1.12 %
1.43 %
0.4 px
0.4 px
100.00 %
0.32 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, X. Ding and X. Yang: Iterative Geometry Encoding Volume for
Stereo Matching . CVPR 2023.
52
ICGNet-abl
1.12 %
1.41 %
0.4 px
0.4 px
100.00 %
0.18s
1 core @ 2.5 Ghz (C/C++)
53
SG-IGEV
1.12 %
1.39 %
0.4 px
0.4 px
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo
matching . 2024.
54
IGEV-Stereo
1.12 %
1.44 %
0.4 px
0.4 px
100.00 %
0.18 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, X. Wang, X. Ding and X. Yang: Iterative Geometry Encoding Volume for
Stereo Matching . CVPR 2023.
55
kpa
1.13 %
1.55 %
0.4 px
0.5 px
100.00 %
0.4 s
1 core @ 2.5 Ghz (C/C++)
56
MAStereo
1.13 %
1.40 %
0.4 px
0.5 px
100.00 %
0.07 s
GPU @ 2.5 Ghz (Python)
57
LaC+GwcNet
code
1.13 %
1.49 %
0.5 px
0.5 px
100.00 %
0.65 s
GPU @ 2.5 Ghz (Python)
B. Liu, H. Yu and Y. Long: Local Similarity Pattern and Cost Self-
Reassembling for Deep Stereo Matching Networks . Proceedings of the AAAI Conference on
Artificial Intelligence 2022.
58
MR_Igev
1.13 %
1.43 %
0.4 px
0.4 px
100.00 %
0.5 s
1 core @ 2.5 Ghz (C/C++)
59
ACVNet
code
1.13 %
1.47 %
0.4 px
0.5 px
100.00 %
0.2 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, J. Cheng, P. Guo and X. Yang: Attention Concatenation Volume for
Accurate and Efficient Stereo Matching . CVPR 2022.
60
LEAStereo
code
1.13 %
1.45 %
0.5 px
0.5 px
100.00 %
0.3 s
GPU @ 2.5 Ghz (Python)
X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond and Z. Ge: Hierarchical Neural Architecture Search
for Deep Stereo Matching . Advances in Neural Information
Processing Systems 2020.
61
CREStereo
code
1.14 %
1.46 %
0.4 px
0.5 px
100.00 %
0.40 s
GPU @ >3.5 Ghz (C/C++)
J. Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan and S. Liu: Practical Stereo Matching via
Cascaded Recurrent Network with Adaptive
Correlation . 2022.
62
ADBM
1.14 %
1.48 %
0.4 px
0.4 px
100.00 %
0.4 s
1 core @ 2.5 Ghz (C/C++)
63
TEEV
1.16 %
1.47 %
0.4 px
0.4 px
100.00 %
0.32 s
1 core @ 2.5 Ghz (C/C++)
64
IGEVStereo-DU
1.16 %
1.50 %
0.4 px
0.5 px
100.00 %
0.08 s
1 core @ 2.5 Ghz (C/C++)
65
FGDS-Net
1.17 %
1.51 %
0.4 px
0.5 px
100.00 %
0.3 s
1 core @ 2.5 Ghz (Python)
66
AcfNet
code
1.17 %
1.54 %
0.5 px
0.5 px
100.00 %
0.48 s
1 core @ 2.5 Ghz (Python)
Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li and K. Yang: Adaptive Unimodal Cost Volume Filtering for Deep
Stereo Matching . AAAI 2020.
67
DualNet*
1.17 %
1.57 %
0.4 px
0.5 px
100.00 %
0.17 s
1 core @ 2.5 Ghz (C/C++)
68
4D-IteraStereo
1.17 %
1.55 %
0.4 px
0.5 px
100.00 %
0.4 s
GPU @ 2.5 Ghz (Python)
69
GINet
1.17 %
1.56 %
0.4 px
0.5 px
100.00 %
0.25 s
2 cores @ 2.5 Ghz (Python)
70
Abc-Net
1.18 %
1.59 %
0.4 px
0.5 px
100.00 %
0.72 s
4 cores @ 2.5 Ghz (Python)
X. Li, Y. Fan, G. Lv and H. Ma: Area-based correlation and non-local
attention network for stereo matching . The Visual Computer 2021.
71
CAL-Net
1.19 %
1.53 %
0.4 px
0.5 px
100.00 %
0.44 s
4 cores @ 2.5 Ghz (Python)
S. Chen, B. Li, W. Wang, H. Zhang, H. Li and Z. Wang: Cost Affinity Learning Network for
Stereo Matching . IEEE International Conference on
Acoustics, Speech and Signal Processing,
ICASSP 2021, Toronto, ON, Canada,
June 6-11, 2021 2021.
72
GANet-deep
code
1.19 %
1.60 %
0.4 px
0.5 px
100.00 %
1.8 s
GPU @ 2.5 Ghz (Python)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for
End-to-end Stereo Matching . Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR) 2019.
73
PCMAnet
1.20 %
1.63 %
0.5 px
0.5 px
100.00 %
0.27 s
1 core @ 2.5 Ghz (C/C++)
74
OptStereo
1.20 %
1.61 %
0.4 px
0.5 px
100.00 %
0.10 s
GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module for
end-to-end self-supervised stereo matching . IEEE Robotics and Automation Letters 2021.
75
GHUStereo-4-gwce
1.21 %
1.61 %
0.4 px
0.5 px
100.00 %
0.021 s
RTX 4070 (PyTorch)
76
NLCA-Net-3
code
1.21 %
1.60 %
0.4 px
0.5 px
100.00 %
0.44 s
GPU @ 2.5 Ghz (Python)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention
network for stereo matching . APSIPA Transactions on Signal and
Information Processing 2020.
77
CFNet
code
1.23 %
1.58 %
0.4 px
0.5 px
100.00 %
0.18 s
1 core @ 2.5 Ghz (Python)
Z. Shen, Y. Dai and Z. Rao: CFNet: Cascade and Fused Cost Volume for
Robust Stereo Matching . IEEE Conference on Computer Vision
and
Pattern Recognition (CVPR) 2021. Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang: Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis
and Machine Intelligence 2023.
78
PFSMNet
code
1.23 %
1.58 %
0.5 px
0.5 px
100.00 %
0.31 s
1 core @ 2.5 Ghz (C/C++)
K. Zeng, Y. Wang, Q. Zhu, J. Mao and H. Zhang: Deep Progressive Fusion Stereo Network . IEEE Transactions on Intelligent
Transportation Systems 2021.
79
DispNO
1.24 %
1.58 %
0.5 px
0.5 px
100.00 %
0.73 s
GPU @ 3.0 Ghz (Python)
80
NLCA-Net
code
1.25 %
1.62 %
0.4 px
0.5 px
100.00 %
0.6 s
GPU @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: NLCA-Net: a non-local context attention
network for stereo matching . APSIPA Transactions on Signal and
Information Processing 2020.
81
MPFV-Stereo
1.26 %
1.62 %
0.4 px
0.5 px
100.00 %
0.31 s
1 core @ 2.5 Ghz (Python)
82
GHUStereo-4-nce
1.27 %
1.67 %
0.4 px
0.5 px
100.00 %
0.034 s
RTX 4070 (PyTorch)
83
SCV-Stereo
code
1.27 %
1.68 %
0.5 px
0.5 px
100.00 %
0.08 s
GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan and M. Liu: SCV-Stereo: Learning stereo
matching from a sparse cost volume . 2021 IEEE International Conference
on Image Processing (ICIP) 2021.
84
ag
1.28 %
1.76 %
0.4 px
0.5 px
100.00 %
0.2 s
1 core @ 2.5 Ghz (C/C++)
85
RT-IGEV++
code
1.29 %
1.68 %
0.4 px
0.5 px
100.00 %
0.05 s
1 core @ 2.5 Ghz (Python)
G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang: IGEV++: Iterative Multi-range Geometry
Encoding Volumes for Stereo Matching . arXiv preprint arXiv:2409.00638 2024.
86
DCVSMNet
code
1.30 %
1.67 %
0.5 px
0.5 px
100.00 %
0.07 s
GPU @ 2.5 Ghz (Python)
M. Tahmasebi, S. Huq, K. Meehan and M. McAfee: DCVSMNet: Double Cost Volume Stereo Matching Network . 2024.
87
DPCTF-S
1.31 %
1.72 %
0.5 px
0.5 px
100.00 %
0.11 s
GPU @ 2.5 Ghz (Python)
Y. Deng, J. Xiao, S. Zhou and J. Feng: Detail Preserving Coarse-to-Fine Matching
for Stereo Matching and Optical Flow . IEEE Transactions on Image Processing 2021.
88
CCAStereo
1.31 %
1.64 %
0.5 px
0.5 px
100.00 %
0.05 s
GPU @ 1.5 Ghz (Python)
89
AMNet
1.32 %
1.73 %
0.5 px
0.5 px
100.00 %
0.9 s
GPU @ 2.5 Ghz (Python)
X. Du, M. El-Khamy and J. Lee: AMNet: Deep Atrous Multiscale Stereo
Disparity Estimation Networks . 2019.
90
GwcNet-gc
code
1.32 %
1.70 %
0.5 px
0.5 px
100.00 %
0.32 s
GPU @ 2.0 Ghz (Java + C/C++)
X. Guo, K. Yang, W. Yang, X. Wang and H. Li: Group-wise correlation stereo network . CVPR 2019.
91
PGNet
1.32 %
1.79 %
0.5 px
0.5 px
100.00 %
0.7 s
1 core @ 2.5 Ghz (python)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: PGNet: Panoptic parsing guided deep stereo
matching . Neurocomputing 2021.
92
TCMNet
1.33 %
1.81 %
0.5 px
0.5 px
100.00 %
0.02 s
RTX 3090 GPU PyTorch
93
LightStereo-L*
1.34 %
1.62 %
0.5 px
0.5 px
100.00 %
0.05 s
1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need
for Efficient 2D Cost Aggregation . arXiv preprint arXiv:2406.19833 2024.
94
SG-MSNet3D
1.34 %
1.74 %
0.5 px
0.5 px
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo
matching . 2024.
95
G2L-Stereo
1.36 %
1.74 %
0.4 px
0.5 px
100.00 %
0.05 s
GPU @ 1.5 Ghz (Python)
96
FusionStereo
1.36 %
1.77 %
0.5 px
0.5 px
100.00 %
16 s
1 core @ 2.5 Ghz (Python)
97
GANet-15
code
1.36 %
1.80 %
0.5 px
0.5 px
100.00 %
0.36 s
1 core @ 2.5 Ghz (C/C++)
F. Zhang, V. Prisacariu, R. Yang and P. Torr: GA-Net: Guided Aggregation Net for
End-to-end Stereo Matching . Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition
(CVPR) 2019.
98
ADStereo
code
1.36 %
1.68 %
0.5 px
0.5 px
100.00 %
0.05 s
1 core @ 2.5 Ghz (C/C++)
99
GEMAStereo
1.38 %
1.72 %
0.5 px
0.5 px
100.00 %
0.03 s
1 core @ 2.5 Ghz (C/C++)
100
ADStereo_fast
code
1.38 %
1.72 %
0.5 px
0.5 px
100.00 %
0.03 s
1 core @ 2.5 Ghz (C/C++)
101
fds
1.38 %
1.72 %
0.5 px
0.5 px
100.00 %
0.3 s
1 core @ 2.5 Ghz (C/C++)
102
SGNet
1.38 %
1.85 %
0.5 px
0.5 px
100.00 %
0.6 s
1 core @ 2.5 Ghz (Python + C/C++)
S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai: SGNet: Semantics Guided Deep Stereo
Matching . Proceedings of the Asian Conference
on Computer Vision (ACCV) 2020.
103
SG-PSMnet
1.38 %
1.80 %
0.5 px
0.5 px
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo
matching . 2024.
104
HD^3-Stereo
code
1.40 %
1.80 %
0.5 px
0.5 px
100.00 %
0.14 s
NVIDIA Pascal Titan XP
Z. Yin, T. Darrell and F. Yu: Hierarchical Discrete Distribution Decomposition
for Match Density Estimation . CVPR 2019.
105
HITNet
code
1.41 %
1.89 %
0.4 px
0.5 px
100.00 %
0.02 s
GPU @ 2.5 Ghz (Python + C/C++)
V. Tankovich, C. Häne, Y. Zhang, A. Kowdle, S. Fanello and S. Bouaziz: HITNet: Hierarchical Iterative Tile
Refinement Network for Real-time Stereo
Matching . CVPR 2021.
106
CFP-Net
code
1.41 %
1.83 %
0.5 px
0.5 px
100.00 %
0.95 s
8 cores @ 2.5 Ghz (Python)
Z. Zhu, M. He, Y. Dai, Z. Rao and B. Li: Multi-scale Cross-form Pyramid Network for Stereo Matching . arXiv preprint 2019.
107
WSMCnet
code
1.42 %
1.90 %
0.6 px
0.6 px
100.00 %
0.39 s
GPU @ Nvidia GTX 1070 (Pytorch)
Y. Wang, H. Wang, G. Yu, M. Yang, Y. Yuan and J. Quan: Stereo Matching Algorithm Based on Three-Dimensional Convolutional Neural Network . Acta Optica Sinica 2019.
108
UAIStereo
1.45 %
1.81 %
0.5 px
0.5 px
100.00 %
0.06 s
GPU @ 3.5 Ghz (Python)
109
Fast-ACVNet+
code
1.45 %
1.85 %
0.5 px
0.5 px
100.00 %
0.05 s
NVIDIA RTX 3090 (PyTorch)
G. Xu, Y. Wang, J. Cheng, J. Tang and X. Yang: Accurate and efficient stereo matching
via attention concatenation volume . IEEE Transactions on Pattern Analysis
and Machine Intelligence 2023.
110
EdgeStereo-V2
1.46 %
1.83 %
0.4 px
0.5 px
100.00 %
0.32 s
Nvidia GTX Titan Xp
X. Song, X. Zhao, L. Fang, H. Hu and Y. Yu: Edgestereo: An effective multi-task
learning network for stereo matching and edge
detection . International Journal of Computer
Vision (IJCV) 2019.
111
MABNet_origin
code
1.47 %
1.89 %
0.5 px
0.5 px
100.00 %
0.38 s
Nvidia rtx2080ti (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network
Based on Multibranch Adjustable Bottleneck
Module . .
112
SSPCVNet
1.47 %
1.90 %
0.5 px
0.6 px
100.00 %
0.9 s
1 core @ 2.5 Ghz (Python)
Z. Wu, X. Wu, X. Zhang, S. Wang and L. Ju: Semantic Stereo Matching With Pyramid Cost
Volumes . The IEEE International Conference on
Computer Vision (ICCV) 2019.
113
PSMNet
code
1.49 %
1.89 %
0.5 px
0.6 px
100.00 %
0.41 s
Nvidia Titan Xp
J. Chang and Y. Chen: Pyramid Stereo Matching Network . arXiv preprint arXiv:1803.08669 2018.
114
CAS++
1.52 %
1.87 %
0.5 px
0.6 px
100.00 %
.1 s
1 core @ 2.5 Ghz (C/C++)
115
IVF-AStereo
1.52 %
1.87 %
0.5 px
0.6 px
100.00 %
0.15 s
GPU @ 3.0 Ghz (Python)
116
HSM
code
1.53 %
1.99 %
0.5 px
0.6 px
100.00 %
0.15 s
Titan X Pascal
G. Yang, J. Manela, M. Happold and D. Ramanan: Hierarchical Deep Stereo Matching on
High-
Resolution Images . The IEEE Conference on Computer
Vision
and Pattern Recognition (CVPR) 2019.
117
MCVFNet
1.54 %
2.00 %
0.5 px
0.6 px
100.00 %
0.029 s
RTX 2080TI
118
LightStereo-L
code
1.55 %
1.87 %
0.5 px
0.5 px
100.00 %
0.03 s
1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need
for Efficient 2D Cost Aggregation . arXiv preprint arXiv:2406.19833 2024.
119
AANet+
code
1.55 %
2.04 %
0.4 px
0.5 px
100.00 %
0.06 s
NVIDIA V100 GPU
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network
for Efficient Stereo Matching . CVPR 2020.
120
CoEx
code
1.55 %
1.93 %
0.5 px
0.5 px
100.00 %
0.027 s
RTX 2080Ti (Python)
A. Bangunharcana, J. Cho, S. Lee, I. Kweon, K. Kim and S. Kim: Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume Excitation . 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021.
121
LightStereo-M
code
1.56 %
1.91 %
0.5 px
0.5 px
100.00 %
0.02 s
1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need
for Efficient 2D Cost Aggregation . arXiv preprint arXiv:2406.19833 2024.
122
BGNet+
1.62 %
2.03 %
0.5 px
0.6 px
100.00 %
0.02 s
GPU @ 2.5 Ghz (Python)
B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo: Bilateral Grid Learning for Stereo Matching
Network . Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR) 2021.
123
MSDC-Net
1.63 %
2.09 %
0.5 px
0.6 px
100.00 %
0.6 s
1 core @ 2.5 Ghz (C/C++)
Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He: MSDC-Net: Multi-Scale Dense and
Contextual Networks for Stereo Matching . 2019 Asia-Pacific Signal and
Information Processing Association Annual Summit
and Conference (APSIPA ASC) 2019.
124
SG-MSNet2D
1.63 %
2.09 %
0.5 px
0.6 px
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng: The Sampling-Gaussian for stereo
matching . 2024.
125
WaveletStereo
1.66 %
2.18 %
0.5 px
0.6 px
100.00 %
0.27 s
1 core @ 2.5 Ghz (C/C++)
Anonymous: WaveletStereo: Learning wavelet coefficients
for stereo matching . arXiv: Computer Vision and Pattern
Recognition 2019.
126
guss-stereo
1.68 %
2.10 %
0.5 px
0.6 px
100.00 %
0.2 s
1 core @ 2.5 Ghz (C/C++)
127
SegStereo
code
1.68 %
2.03 %
0.5 px
0.6 px
100.00 %
0.6 s
Nvidia GTX Titan Xp
G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia: SegStereo: Exploiting Semantic
Information for Disparity Estimation . ECCV 2018.
128
AutoDispNet-CSS
code
1.70 %
2.05 %
0.5 px
0.5 px
100.00 %
0.9 s
1 core @ 2.5 Ghz (C/C++)
T. Saikia, Y. Marrakchi, A. Zela, F. Hutter and T. Brox: AutoDispNet: Improving Disparity
Estimation with AutoML . The IEEE International
Conference on Computer Vision (ICCV) 2019.
129
GHUStereo-8-gwce
1.71 %
2.08 %
0.6 px
0.6 px
100.00 %
0.021 s
RTX 4070 (PyTorch)
130
iResNet-i2
code
1.71 %
2.16 %
0.5 px
0.6 px
100.00 %
0.12 s
1 core @ 2.5 Ghz (C/C++)
Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou and J. Zhang: Learning for disparity estimation through feature constancy . Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018.
131
GHUStereo-8-nce
1.74 %
2.13 %
0.5 px
0.6 px
100.00 %
0.019 s
RTX 4070 (PyTorch)
132
GC-NET
1.77 %
2.30 %
0.6 px
0.7 px
100.00 %
0.9 s
Nvidia GTX Titan X
A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach and A. Bry: End-to-End Learning of Geometry and Context for
Deep Stereo Regression . Proceedings of the International Conference on
Computer Vision (ICCV) 2017.
133
ERSCNet
1.80 %
2.30 %
0.5 px
0.6 px
100.00 %
0.28 s
GPU @ 2.5 Ghz (Python)
Anonymous: ERSCNet . Proceedings of the European
Conference on Computer Vision (ECCV) 2020.
134
LI-ACVNet
1.82 %
2.27 %
0.6 px
0.7 px
100.00 %
0.14 s
GPU @ 2.5 Ghz (Python)
135
LightStereo-S
code
1.88 %
2.34 %
0.6 px
0.6 px
100.00 %
0.01 s
1 core @ 2.5 Ghz (Python)
X. Guo, C. Zhang, D. Nie, W. Zheng, Y. Zhang and L. Chen: LightStereo: Channel Boost Is All Your Need
for Efficient 2D Cost Aggregation . arXiv preprint arXiv:2406.19833 2024.
136
AANet
code
1.91 %
2.42 %
0.5 px
0.6 px
100.00 %
0.06 s
GPU @ 2.5 Ghz (Python)
H. Xu and J. Zhang: AANet: Adaptive Aggregation Network
for Efficient Stereo Matching . CVPR 2020.
137
PDSNet
1.92 %
2.53 %
0.9 px
1.0 px
100.00 %
0.5 s
1 core @ 2.5 Ghz (Python + C/C++)
S. Tulyakov, A. Ivanov and F. Fleuret: Practical Deep Stereo (PDS): Toward
applications-friendly deep stereo matching . Proceedings of the international conference
on Neural Information Processing Systems (NIPS) 2018.
138
PVStereo
1.98 %
2.47 %
0.7 px
0.8 px
100.00 %
0.10 s
1 core @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: PVStereo: Pyramid voting module
for end-to-end self-supervised stereo matching . IEEE Robotics and Automation
Letters 2021.
139
CKDNet_1.0
2.00 %
2.50 %
0.6 px
0.7 px
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
140
CKDNet_0.5
2.01 %
2.63 %
0.6 px
0.8 px
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
141
FADNet
code
2.04 %
2.46 %
0.5 px
0.6 px
100.00 %
0.05 s
Tesla V100 (Python)
Q. Wang, S. Shi, S. Zheng, K. Zhao and X. Chu: FADNet: A Fast and Accurate Network
for Disparity Estimation . arXiv preprint arXiv:2003.10758 2020.
142
MMStereo
2.04 %
2.52 %
0.6 px
0.7 px
100.00 %
0.04 s
Nvidia Titan RTX (Python)
K. Shankar, M. Tjersland, J. Ma, K. Stone and M. Bajracharya: A Learned Stereo Depth System for
Robotic Manipulation in Homes . .
143
DualNet
2.06 %
2.59 %
0.6 px
0.6 px
100.00 %
0.17 s
1 core @ 2.5 Ghz (C/C++)
144
CKDNet_0.3
2.15 %
2.76 %
0.6 px
0.7 px
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
145
RecResNet
code
2.21 %
2.94 %
0.6 px
0.7 px
100.00 %
0.3 s
GPU @ NVIDIA TITAN X (Tensorflow)
K. Batsos and P. Mordohai: RecResNet: A Recurrent Residual CNN
Architecture for Disparity Map Enhancement . In International Conference on 3D
Vision (3DV) 2018.
146
L-ResMatch
code
2.27 %
3.40 %
0.7 px
1.0 px
100.00 %
48 s
Titan X (Torch7, CUDA)
A. Shaked and L. Wolf: Improved Stereo Matching with Constant Highway
Networks and Reflective Loss . arXiv preprint arxiv:1701.00165 2016.
147
CNNF+SGM
2.28 %
3.48 %
0.7 px
0.9 px
100.00 %
71 s
TESLA K40C
F. Zhang and B. Wah: Fundamental Principles on Learning New
Features for Effective Dense Matching . IEEE Transactions on Image
Processing 2018.
148
SGM-Net
2.29 %
3.50 %
0.7 px
0.9 px
100.00 %
67 s
Titan X
A. Seki and M. Pollefeys: SGM-Nets: Semi-Global Matching With Neural
Networks . CVPR 2017.
149
SsSMnet
2.30 %
3.00 %
0.7 px
0.8 px
100.00 %
0.8 s
Titan Xp
Y. Zhong, Y. Dai and H. Li: Self-Supervised Learning for Stereo
Matching with Self-Improving Ability . arXiv:1709.00930 2017.
150
PBCP
2.36 %
3.45 %
0.7 px
0.9 px
100.00 %
68 s
Nvidia GTX Titan X
A. Seki and M. Pollefeys: Patch Based Confidence Prediction for
Dense Disparity Map . British Machine Vision Conference
(BMVC) 2016.
151
Displets v2
code
2.37 %
3.09 %
0.7 px
0.8 px
100.00 %
265 s
>8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities
using Object
Knowledge . Conference on Computer Vision and
Pattern Recognition
(CVPR) 2015.
152
RTSnet
code
2.43 %
2.90 %
0.7 px
0.7 px
100.00 %
0.02 s
1 core @ 2.5 Ghz (Python)
H. Lee and Y. Shin: Real-Time Stereo Matching Network with High
Accuracy . 2019 IEEE International Conference on Image
Processing (ICIP) 2019.
153
MC-CNN-acrt
code
2.43 %
3.63 %
0.7 px
0.9 px
100.00 %
67 s
Nvidia GTX Titan X (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Stereo Matching by Training a Convolutional
Neural Network to Compare Image Patches . Submitted to JMLR .
154
cfusion
code
2.46 %
2.69 %
0.8 px
0.8 px
99.93 %
70 s
GPU (Matlab + CUDA)
V. Ntouskos and F. Pirri: Confidence driven TGV fusion . arXiv preprint arXiv:1603.09302 2016.
155
Displets
code
2.47 %
3.27 %
0.7 px
0.9 px
100.00 %
265 s
>8 cores @ 3.0 Ghz (Matlab + C/C++)
F. Guney and A. Geiger: Displets: Resolving Stereo Ambiguities using Object Knowledge . Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
156
MC-CNN
2.61 %
3.84 %
0.8 px
1.0 px
100.00 %
100 s
Nvidia GTX Titan (CUDA, Lua/Torch7)
J. Zbontar and Y. LeCun: Computing the Stereo Matching Cost with a
Convolutional Neural Network . Conference on Computer Vision and
Pattern Recognition (CVPR) 2015.
157
Fast DS-CS
code
2.61 %
3.20 %
0.7 px
0.8 px
100.00 %
0.02 s
GPU @ 2.0 Ghz (Python + C/C++)
K. Yee and A. Chakrabarti: Fast Deep Stereo with 2D Convolutional
Processing of Cost Signatures . WACV 2020 (to appear).
158
MABNet_tiny
code
2.71 %
3.31 %
0.7 px
0.8 px
100.00 %
0.11 s
1 core @ 2.5 Ghz (Python)
J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu: MABNet: A Lightweight Stereo Network
Based on Multibranch Adjustable Bottleneck
Module . .
159
PRSM
code
2.78 %
3.00 %
0.7 px
0.7 px
100.00 %
300 s
1 core @ 2.5 Ghz (C/C++)
C. Vogel, K. Schindler and S. Roth: 3D Scene Flow Estimation with a
Piecewise Rigid Scene Model . ijcv 2015.
160
DualNet (step 1)
2.82 %
3.45 %
0.7 px
0.8 px
100.00 %
0.17 s
1 core @ 2.5 Ghz (C/C++)
161
SPS-StFl
2.83 %
3.64 %
0.8 px
0.9 px
100.00 %
35 s
1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo
and Flow Estimation . ECCV 2014.
162
SMFormer
2.97 %
3.57 %
0.7 px
0.8 px
100.00 %
0.3 s
1 core @ 2.5 Ghz (C/C++)
163
MC-CNN-WS
code
3.02 %
4.45 %
0.8 px
1.0 px
100.00 %
1.35 s
1 core 2.5 Ghz + K40 NVIDIA, Lua-Torch
S. Tulyakov, A. Ivanov and F. Fleuret: Weakly supervised learning of deep
metrics for stereo reconstruction . ICCV 2017.
164
VC-SF
3.05 %
3.31 %
0.8 px
0.8 px
100.00 %
300 s
1 core @ 2.5 Ghz (C/C++)
C. Vogel, S. Roth and K. Schindler: View-Consistent 3D Scene Flow
Estimation over Multiple Frames . Proceedings of European
Conference on Computer Vision. Lecture
Notes in, Computer Science 2014.
165
Content-CNN
3.07 %
4.29 %
0.8 px
1.0 px
100.00 %
0.7 s
Nvidia GTX Titan X (Torch)
W. Luo, A. Schwing and R. Urtasun: Efficient Deep Learning for Stereo Matching . CVPR 2016.
166
Deep Embed
3.10 %
4.24 %
0.9 px
1.1 px
100.00 %
3 s
1 core @ 2.5 Ghz (C/C++)
Z. Chen, X. Sun, Y. Yu, L. Wang and C. Huang: A Deep Visual Correspondence
Embedding Model for Stereo Matching Costs . ICCV 2015.
167
SAFT-Stereo
3.12 %
3.64 %
0.8 px
0.8 px
100.00 %
0.007 s
NVIDIA GeForce RTX 4090
168
JSOSM
3.15 %
3.94 %
0.8 px
0.9 px
100.00 %
105 s
8 cores @ 2.5 Ghz (C/C++)
X. Li and J. Liu: EFFICIENT STEREO MATCHING USING SEGMENT
OPTIMIZATION . ICIP 2016.
169
FD-Fusion
code
3.16 %
3.85 %
0.7 px
0.8 px
100.00 %
0.01 s
1 core @ 2.5 Ghz (C/C++)
M. Ferrera, A. Boulch and J. Moras: Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations . International Conference on 3D Vision (3DV) 2019.
170
OSF
code
3.28 %
4.07 %
0.8 px
0.9 px
99.98 %
50 min
1 core @ 3.0 Ghz (Matlab + C/C++)
M. Menze and A. Geiger: Object Scene Flow for Autonomous Vehicles . Conference on Computer Vision and Pattern Recognition (CVPR) 2015.
171
CoR
code
3.30 %
4.10 %
0.8 px
0.9 px
100.00 %
6 s
6 cores @ 3.3 Ghz (Matlab + C/C++)
A. Chakrabarti, Y. Xiong, S. Gortler and T. Zickler: Low-level Vision by Consensus in a Spatial
Hierarchy of Regions . CVPR 2015.
172
TCD-CRF
3.32 %
5.24 %
0.9 px
1.9 px
100.00 %
60 s
4 cores @ 3.5 Ghz (C/C++)
S. Arjomand Bigdeli, G. Budweiser and M. Zwicker: Temporally Coherent Disparity Maps Using CRFs with Fast 4D Filtering . Proc. ACPR 2015.
173
SPS-St
code
3.39 %
4.41 %
0.9 px
1.0 px
100.00 %
2 s
1 core @ 3.5 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Efficient Joint Segmentation, Occlusion Labeling, Stereo and
Flow Estimation . ECCV 2014.
174
PCBP-SS
3.40 %
4.72 %
0.8 px
1.0 px
100.00 %
5 min
4 cores @ 2.5 Ghz (Matlab + C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Robust Monocular Epipolar Flow Estimation . CVPR 2013.
175
Pseudo-Stereo
3.46 %
4.08 %
0.8 px
0.9 px
100.00 %
0.15 s
1 core @ 2.5 Ghz (Python)
176
P3SNet+
code
3.55 %
4.42 %
0.8 px
0.9 px
100.00 %
0.01 s
GPU @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo
Network . IEEE Transactions on Intelligent
Transportation Systems 2023.
177
CBMV
code
3.56 %
4.73 %
0.9 px
1.1 px
100.00 %
250 s
6 cores@3.0Ghz(Python,C/C++,CUDA TitanX)
K. Batsos, C. Cai and P. Mordohai: CBMV: A Coalesced Bidirectional Matching
Volume for Disparity Estimation . 2018.
178
P3SNet
code
3.65 %
4.46 %
0.9 px
1.0 px
100.00 %
0.01 s
GPU @ 2.5 Ghz (Python)
A. Emlek and M. Peker: P3SNet: Parallel Pyramid Pooling Stereo
Network . IEEE Transactions on Intelligent
Transportation Systems 2023.
179
DDS-SS
3.83 %
4.59 %
0.9 px
1.0 px
100.00 %
1 min
1 core @ 2.5 Ghz (Matlab + C/C++)
D. Wei, C. Liu and W. Freeman: A Data-driven Regularization Model for Stereo and Flow . 3DTV-Conference, 2014 International Conference on 2014.
180
StereoSLIC
3.92 %
5.11 %
0.9 px
1.0 px
99.89 %
2.3 s
1 core @ 3.0 Ghz (C/C++)
K. Yamaguchi, D. McAllester and R. Urtasun: Robust Monocular Epipolar Flow Estimation . CVPR 2013.
181
SMCM
3.94 %
5.24 %
0.9 px
1.1 px
100.00 %
1800 s
Nvidia GTX 1080 (Caffe)
M. Yang, Y. Liu, Y. Cai and Z. You: Stereo matching based on classification of
materials . Neurocomputing 2016.
182
PR-Sf+E
4.02 %
4.87 %
0.9 px
1.0 px
100.00 %
200 s
4 cores @ 3.0 Ghz (Matlab + C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow . International Conference on Computer
Vision (ICCV) 2013.
183
PCBP
4.04 %
5.37 %
0.9 px
1.1 px
100.00 %
5 min
4 cores @ 2.5 Ghz (Matlab + C/C++)
K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun: Continuous Markov Random Fields for Robust Stereo
Estimation . ECCV 2012.
184
DispNetC
code
4.11 %
4.65 %
0.9 px
1.0 px
100.00 %
0.06 s
Nvidia GTX Titan X (Caffe)
N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy and T. Brox: A Large Dataset to Train
Convolutional Networks for Disparity, Optical
Flow, and Scene Flow Estimation . CVPR 2016.
185
CSPMS
4.13 %
5.92 %
1.2 px
1.6 px
100.00 %
6 s
4 cores @ 2.5 Ghz (C/C++)
J. Cho and M. Humenberger: Fast PatchMatch Stereo
Matching Using Multi-Scale Cost Fusion for
Automotive Applications . IV 2015.
186
SSMNet
4.14 %
4.80 %
0.9 px
1.0 px
100.00 %
0.01 s
GPU @ 2.0 Ghz (Python)
187
SGM-post
4.27 %
5.33 %
1.0 px
1.1 px
100.00 %
5 s
4 cores @ 2.5 Ghz (C/C++)
Z. Zhong: Efficient Learning based Semi-Global Stereo
Matching . 2015 submitted.
188
MBM
4.35 %
5.43 %
1.0 px
1.1 px
100.00 %
0.2 s
1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: A Multi-Block-Matching Approach for Stereo . IV 2015.
189
PR-Sceneflow
4.36 %
5.22 %
0.9 px
1.1 px
100.00 %
150 sec
4 core @ 3.0 Ghz (Matlab - C/C++)
C. Vogel, K. Schindler and S. Roth: Piecewise Rigid Scene Flow . International Conference on Computer
Vision (ICCV) 2013.
190
CRD-Fusion
code
4.38 %
5.40 %
0.9 px
1.1 px
100.00 %
0.02 s
GPU @ 2.5 Ghz (Python)
X. Fan, S. Jeon and B. Fidan: Occlusion-Aware Self-Supervised Stereo
Matching with Confidence Guided Raw Disparity
Fusion . Conference on Robots and Vision 2022.
191
CoR-Conf
code
4.49 %
5.26 %
1.0 px
1.2 px
96.37 %
6 s
6 cores @ 3.3 Ghz (Matlab + C/C++)
A. Chakrabarti, Y. Xiong, S. Gortler and T. Zickler: Low-level Vision by Consensus in a Spatial
Hierarchy of Regions . CVPR 2015.
192
Flow2Stereo
4.58 %
5.11 %
1.0 px
1.1 px
100.00 %
0.05 s
GPU @ 2.5 Ghz (Python)
P. Liu, I. King, M. Lyu and J. Xu: Flow2Stereo: Effective Self-Supervised
Learning of Optical Flow and Stereo Matching . CVPR 2020.
193
DispSegNet
4.68 %
5.66 %
0.9 px
1.0 px
100.00 %
0.9 s
GPU @ 2.5 Ghz (Python)
J. Zhang, K. Skinner, R. Vasudevan and M. Johnson-Roberson: DispSegNet: Leveraging Semantics for End-
to-End Learning of Disparity Estimation From
Stereo Imagery . IEEE Robotics and Automation Letters 2019.
194
pSGM
4.68 %
6.13 %
1.0 px
1.4 px
100.00 %
7.92 s
4 cores @ 3.5 Ghz (C/C++)
Y. Lee, M. Park, Y. Hwang, Y. Shin and C. Kyung: Memory-Efficient Parametric Semiglobal
Matching . IEEE Signal Processing Letters 2018.
195
AARBM
4.86 %
5.94 %
1.0 px
1.2 px
100.00 %
0.25 s
1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption . IV 2014.
196
SSpsm
4.92 %
6.18 %
1.0 px
1.2 px
100.00 %
0.8 s
1 core @ 2.5 Ghz (Python)
197
wSGM
4.97 %
6.18 %
1.3 px
1.6 px
97.03 %
6s
1 core @ 3.5 Ghz (C/C++)
R. Spangenberg, T. Langner and R. Rojas: Weighted Semi-Global Matching and Center-Symmetric Census Transform for Robust Driver Assistance . CAIP 2013.
198
AABM
4.97 %
6.04 %
1.0 px
1.2 px
100.00 %
0.12 s
1 core @ 3.1 Ghz (C/C++)
N. Einecke and J. Eggert: Stereo Image Warping for Improved Depth Estimation of Road Surfaces . IV 2013.
199
ATGV
5.02 %
6.88 %
1.0 px
1.6 px
100.00 %
6 min
>8 cores @ 3.0 Ghz (Matlab + C/C++)
R. Ranftl, T. Pock and H. Bischof: Minimizing TGV-based Variational Models with Non-Convex Data terms . ICSSVM 2013.
200
rSGM
code
5.03 %
6.60 %
1.1 px
1.5 px
97.22 %
0.2 s
4 cores @ 2.6 Ghz (C/C++)
R. Spangenberg, T. Langner, S. Adfeldt and R. Rojas: Large Scale Semi-Global Matching on the CPU . IV 2014.
201
iSGM
5.11 %
7.15 %
1.2 px
2.1 px
94.70 %
8 s
2 cores @ 2.5 Ghz (C/C++)
S. Hermann and R. Klette: Iterative Semi-Global Matching for Robust Driver
Assistance Systems . ACCV 2012.
202
RBM
5.18 %
6.21 %
1.1 px
1.3 px
100.00 %
0.2 s
1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption . IV 2014.
203
ARW
code
5.20 %
6.87 %
1.2 px
1.5 px
99.33 %
4.6s
1 core @ 3.5 Ghz (MATLAB+C/C++)
S. Lee, J. Lee, J. Lim and I. Suh: Robust Stereo Matching using Adaptive Random
Walk with Restart Algorithm . Image and vision computing (accepted) 2015.
204
DLP
5.28 %
7.21 %
1.2 px
2.0 px
100.00 %
60 s
8 cores @ >3.5 Ghz (C/C++)
V. Nguyen, H. Nguyen and J. Jeon: Robust Stereo Data Cost With a Learning
Strategy . IEEE Transactions on Intelligent
Transportation Systems 2017.
205
Ensemble
5.34 %
6.91 %
1.5 px
2.0 px
100.00 %
135 s
2 cores @ >3.5 Ghz (Matlab)
A. Spyropoulos and P. Mordohai: Ensemble Classifier for Combining Stereo
Matching Algorithms . International Conference on 3D Vision
(3DV) 2015.
206
ALTGV
5.36 %
6.49 %
1.1 px
1.2 px
100.00 %
20 s
GPU @ 2.5 Ghz (C/C++)
G. Kuschk and D. Cremers: Fast and Accurate Large-scale Stereo Reconstruction using Variational Methods . ICCV Workshop on Big Data in 3D Computer Vision 2013.
207
SNCC
5.40 %
6.44 %
1.2 px
1.3 px
100.00 %
0.11 s
1 core @ 3.1 Ghz (C/C++)
N. Einecke and J. Eggert: A Two-Stage Correlation Method for Stereoscopic Depth Estimation . DICTA 2010.
208
CAT
5.45 %
6.54 %
1.1 px
1.2 px
100.00 %
10 s
1 core @ 3.5 Ghz (C/C++)
J. Ha, J. Jeon, G. Bae, S. Jo and H. Jeong: Cost Aggregation Table: Cost Aggregation Method Using Summed Area Table Scheme for Dense Stereo Correspondence . Advances in Visual Computing 2014.
209
SACA
5.60 %
7.86 %
1.3 px
2.3 px
100.00 %
5 s
GPU @ 2.5 Ghz (Python)
210
SGM
5.76 %
7.00 %
1.2 px
1.3 px
85.80 %
3.7 s
1 core @ 3.0 Ghz (C/C++)
H. Hirschmueller: Stereo Processing by Semi-Global Matching and Mutual Information . PAMI 2008.
211
mSGM-LDE
6.01 %
8.22 %
1.4 px
2.4 px
100.00 %
55 s
2 cores @ 2.5 Ghz (C/C++)
V. Nguyen, D. Nguyen, S. Lee and J. Jeon: Local Density Encoding for Robust Stereo
Matching . TCSVT 2014.
212
UHP
6.05 %
7.09 %
1.2 px
1.3 px
100.00 %
0.02 s
GPU @ 2.5 Ghz (Python)
R. Yang, X. Li, R. Cong and J. Du: Unsupervised Hierarchical Iterative Tile
Refinement Network with 3D Planar Segmentation
Loss . IEEE Robotics and Automation Letters 2024.
213
AAFS
6.10 %
6.94 %
1.2 px
1.3 px
100.00 %
0.01 s
1 core @ 2.5 Ghz (C/C++)
J. Chang, P. Chang and Y. Chen: Attention-Aware Feature Aggregation for
Real-time Stereo Matching on Edge Devices . Proceedings of the Asian Conference
on Computer Vision 2020.
214
Toast2
6.16 %
7.42 %
1.2 px
1.4 px
95.39 %
0.03 s
4 cores @ 3.5 Ghz (C/C++)
B. Ranft and T. Strau\ss: Modeling Arbitrarily Oriented Slanted
Planes for Efficient Stereo Vision based on Block
Matching . Intelligent Transportation Systems
(ITSC), 2014 IEEE 17th International Conference
on 2014.
215
ITGV
6.20 %
7.30 %
1.3 px
1.5 px
100.00 %
7 s
1 core @ 3.0 Ghz (Matlab + C/C++)
R. Ranftl, S. Gehrig, T. Pock and H. Bischof: Pushing the Limits of Stereo Using Variational Stereo Estimation . IV 2012.
216
OASM-Net
6.39 %
8.60 %
1.3 px
2.0 px
100.00 %
0.73 s
GPU @ 2.5 Ghz (Python)
A. Li and Z. Yuan: Occlusion Aware Stereo Matching via Cooperative Unsupervised Learning . Proceedings of the Asian Conference on Computer Vision, ACCV 2018.
217
Permutation Stereo
7.39 %
8.48 %
1.6 px
1.8 px
99.93 %
30 s
GPU @ 2.5 Ghz (Matlab)
P. Brousseau and S. Roy: A Permutation Model for the Self-
Supervised Stereo Matching Problem . 2022 19th Conference on Robots and
Vision (CRV) 2022.
218
OCV-SGBM
code
7.64 %
9.13 %
1.8 px
2.0 px
86.50 %
1.1 s
1 core @ 2.5 Ghz (C/C++)
H. Hirschmueller: Stereo processing by semiglobal matching
and mutual information . PAMI 2008.
219
SSMW
7.83 %
8.95 %
1.6 px
1.8 px
99.99 %
2.5 min
8 cores @ 2.5 Ghz (C/C++)
X. Li, J. Liu, G. Chen and H. Fu: Efficient Methods Using Slanted
Support Windows for Slanted Surfaces . IET Computer Vision,
http://ietdl.org/t/5QsTxb 2016.
220
MSMW
code
8.01 %
9.24 %
1.6 px
1.7 px
72.39 %
3 min
4 cores @ 2.5 Ghz (C/C++)
A. Buades and G. Facciolo: On the performance of local methods for stereovision . 2013 submitted.
221
HSMA
8.15 %
10.33 %
1.9 px
2.9 px
100.00 %
44s
1 core @ 3.0 Ghz (C/C++)
O. Zeglazi, M. Rziza, A. Amine and C. Demonceaux: A hierarchical stereo matching
algorithm
based on adaptive support region aggregation
method . Pattern Recognition Letters 2018.
222
ELAS
code
8.24 %
9.96 %
1.4 px
1.6 px
94.55 %
0.3 s
1 core @ 2.5 Ghz (C/C++)
A. Geiger, M. Roser and R. Urtasun: Efficient Large-Scale Stereo Matching . ACCV 2010.
223
linBP
8.56 %
10.70 %
1.7 px
2.7 px
99.89 %
1.6 min
1 core @ 3.0 Ghz (C/C++)
W. Khan, V. Suaste, D. Caudillo and R. Klette: Belief Propagation Stereo Matching
Compared to iSGM on Binocular or Trinocular Video
Data . IV 2013.
224
ADSM
8.71 %
10.05 %
2.1 px
2.7 px
100.00 %
125 s
1 core @ 2.0 Ghz (C/C++)
O. Zeglazi, M. Rziza, A. Amine and C. Demonceaux: Accurate dense stereo matching
for road scenes . 2017 IEEE International
Conference on Image Processing, ICIP 2017,
Beijing, China, September 17-20,
2017 .
225
Deep-Raw
8.93 %
11.07 %
3.9 px
4.9 px
100.00 %
1 s
1 core @ 2.5 Ghz (C/C++)
Z. Chen, X. Sun, Y. Yu, L. Wang and C. Huang: A Deep Visual Correspondence
Embedding Model for Stereo Matching Costs . ICCV 2015.
226
S+GF (Cen)
code
9.03 %
11.21 %
2.1 px
3.4 px
100.00 %
140 s
1 core @ 3.0 Ghz (C/C++)
K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan and Q. Tian: Cross-Scale Cost Aggregation
for Stereo Matching . CVPR 2014.
227
CrossCensus
9.46 %
10.86 %
2.3 px
2.7 px
100.00 %
30 s
1 core @ 2.5 Ghz (C/C++)
K. Zhang, J. Lu and G. Lafruit: Cross-Based Local Stereo Matching Using
Orthogonal Integral Images . Circuits and Systems for Video
Technology, IEEE Transactions on 2009.
228
SymST-GP
9.79 %
11.66 %
2.5 px
3.3 px
100.00 %
0.254 s
Dual - Nvidia GTX Titan (CUDA)
R. Ralha, G. Falcao, J. Amaro, V. Mota, M. Antunes, J. Barreto and U. Nunes: Parallel refinement of slanted 3D
reconstruction using dense stereo induced from
symmetry . Journal of Real-Time Image
Processing 2016.
229
SM_GPTM
9.79 %
11.38 %
2.1 px
2.6 px
100.00 %
6.5 s
2 cores @ 2.5 Ghz (C/C++)
C. Cigla and A. Alatan: An Improved Stereo Matching Algorithm with Ground Plane
and Temporal Smoothness Constraints . ECCV Workshops 2012.
230
LAMC-DSΜ
9.82 %
11.49 %
2.1 px
2.7 px
99.96 %
10.8 min
2 cores @ 2.5 Ghz (Matlab)
C. Stentoumis, L. Grammatikopoulos, I. Kalisperakis, E. Petsa and G. Karras: A local adaptive approach for dense stereo matching in architectural scene reconstruction . ISPRS 2013.
231
IIW
10.78 %
12.62 %
3.3 px
4.3 px
70.85 %
5.5 s
1 core @ 2.5 Ghz (C/C++)
A. Murarka and N. Einecke: A meta-technique for increasing density of local stereo methods through iterative interpolation and warping . Canadian Conference on Computer and Robot Vision 2014.
232
SDM
code
10.95 %
12.14 %
2.0 px
2.3 px
63.58 %
1 min
1 core @ 2.5 Ghz (C/C++)
J. Kostkova: Stratified dense matching for stereopsis
in complex scenes . BMVC 2003.
233
HLSC_mesh
11.22 %
12.82 %
2.3 px
2.9 px
100.00 %
800 s
1 core @ 2.5 Ghz (Matlab + C/C++)
S. Hadfield, K. Lebeda and R. Bowden: Stereo reconstruction using top-down
cues . Computer Vision and Image
Understanding 2016.
234
GF (Census)
code
11.65 %
13.76 %
4.5 px
5.6 px
100.00 %
120 s
1 core @ 3.0 Ghz (C/C++)
A. Hosni, C. Rhemann, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering
for Visual Correspondence and Beyond . TPAMI 2013. K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan and Q. Tian: Cross-Scale Cost Aggregation
for Stereo Matching . CVPR 2014.
235
BSM
code
11.74 %
13.44 %
2.2 px
2.8 px
97.02 %
2.5 min
1 core @ 3.0 Ghz (C/C++)
K. Zhang, J. Li, Y. Li, W. Hu, L. Sun and S. Yang: Binary stereo matching . Pattern Recognition (ICPR), 2012 21st
International Conference on 2012.
236
GCSF
code
12.05 %
13.24 %
1.9 px
2.1 px
60.77 %
2.4 s
1 core @ 2.5 Ghz (C/C++)
J. Cech, J. Sanchez-Riera and R. Horaud: Scene Flow Estimation by Growing
Correspondence Seeds . CVPR 2011.
237
OCV-BM-post
code
12.28 %
13.76 %
2.1 px
2.3 px
47.11 %
0.1 s
1 core @ 2.5 Ghz (C/C++)
G. Bradski: The OpenCV Library . Dr. Dobb's Journal of Software Tools 2000.
238
GCS
code
13.38 %
14.54 %
2.1 px
2.3 px
51.06 %
2.2 s
1 core @ 2.5 Ghz (C/C++)
J. Cech and R. Sara: Efficient Sampling of Disparity Space
for Fast And Accurate Matching . BenCOS 2007.
239
GLDS
code
17.22 %
18.63 %
2.8 px
3.2 px
100.00 %
26 s
GPU @ 1.5 Ghz (C/C++)
K. Oguri and Y. Shibata: A new stereo formulation not using pixel and disparity
models . 2018.
240
CostFilter
code
19.99 %
21.08 %
5.0 px
5.4 px
100.00 %
4 min
1 core @ 2.5 Ghz (Matlab)
C. Rhemann, A. Hosni, M. Bleyer, C. Rother and M. Gelautz: Fast Cost-Volume Filtering for Visual
Correspondence and Beyond . CVPR 2011.
241
GC+occ
code
33.49 %
34.73 %
8.6 px
9.2 px
87.57 %
6 min
1 core @ 2.5 Ghz (C/C++)
V. Kolmogorov and R. Zabih: Computing Visual Correspondence with
Occlusions using Graph Cuts . ICCV 2001.
242
VariableCros
34.84 %
36.11 %
12.4 px
12.9 px
95.66 %
30 s
1 core @ 2.5 Ghz (Matlab)
K. Zhang, J. Lu and G. Lafruit: Cross-Based Local Stereo Matching Using
Orthogonal Integral Images . Circuits and Systems for Video
Technology,
IEEE Transactions on 2009.
243
ALE-Stereo
code
50.48 %
51.19 %
13.0 px
13.5 px
100.00 %
50 min
1 core @ 3.0 Ghz (C/C++)
L. Ladicky, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar, W. Clocksin and P. Torr: Joint Optimisation for Object Class
Segmentation and Dense Stereo Reconstruction . BMVC 2010.
244
MEDIAN
52.61 %
53.67 %
7.7 px
8.2 px
99.95 %
0.01 s
1 core @ 2.5 Ghz (C/C++)
245
AVERAGE
61.62 %
62.49 %
8.0 px
8.6 px
99.95 %
0.01 s
1 core @ 2.5 Ghz (C/C++)