Method 
     Setting 
     Code 
     D1-bg 
     D1-fg 
     D1-all  
     Density 
     Runtime 
     Environment 
      
    
   
    1 
     MonSter++  
      
     code  
      1.12 % 
      2.65 % 
      1.37 %  
     100.00 % 
     0.45 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    J. Cheng, W. Liao, Z. Cai, L. Liu, G. Xu, X. Wang, Y. Wang, Z. Yuan, Y. Deng, J. Zang, Y. Shi, J. Tang and X. Yang:  MonSter++: Unified Stereo Matching, 
Multi-view Stereo, and Real-time Stereo with 
Monodepth Priors . 2025. 
    
   
    2 
     Wavelet-MonSter  
      
      
      1.14 % 
      2.60 % 
      1.38 % 
     100.00 % 
     0.58 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    3 
     BridgeDepth  
      
     code  
      1.13 % 
      2.73 % 
      1.40 % 
     100.00 % 
     0.13 s 
     Pytorch@NVIDIA RTX 3090 
      
    
   
    T. Guan, J. Guo, C. Wang and Y. Liu:  BridgeDepth: Bridging Monocular and Stereo Reasoning 
with 
Latent Alignment . ICCV 2025 Highlight. 
    
   
    4 
     LACA  
      
     code  
      1.11 % 
      2.82 % 
      1.40 % 
     100.00 % 
     0.24 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    5 
     MonSter  
      
     code  
      1.13 % 
      2.81 % 
      1.41 % 
     100.00 % 
     0.45 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    J. Cheng, L. Liu, G. Xu, Z. Cai and X. Yang:  MonSter: Marry Monodepth to Stereo
Unleashes Power . CVPR 2025 Highlight. 
    
   
    6 
     DEFOM-Stereo  
      
     code  
      1.25 % 
      2.23 %  
      1.41 % 
     100.00 % 
     0.30s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    H. Jiang, Z. Lou, L. Ding, R. Xu, M. Tan, W. Jiang and R. Huang:  DEFOM-Stereo: Depth Foundation Model Based 
Stereo Matching . IEEE International Conference on 
Computer Vision and Pattern Recognition (CVPR) 2025. 
    
   
    7 
     Argus  
      
      
      1.22 % 
      2.38 % 
      1.42 % 
     100.00 % 
     0.3 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    8 
     SEA-Flow3D + Monster  
      
      
      1.13 % 
      2.83 % 
      1.42 % 
     100.00 % 
     0.07 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    9 
     AdaDepth  
      
      
      1.25 % 
      2.25 % 
      1.42 % 
     100.00 % 
     0.7 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    10 
     MGS-Selective  
      
      
      1.13 % 
      2.88 % 
      1.42 % 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    11 
     SLiDC-Stereo  
      
      
      1.16 % 
      2.74 % 
      1.42 % 
     100.00 % 
     0.29 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    12 
     S-IGEV-ICAE  
      
      
      1.26 % 
      2.24 % 
      1.43 % 
     100.00 % 
     0.251 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    13 
     IGEV++ (DepthAny.)  
      
     code  
      1.15 % 
      2.80 % 
      1.43 % 
     100.00 % 
     0.48 s 
     NVIDIA RTX 3090 (PyTorch) 
      
    
   
    G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang:  IGEV++: Iterative Multi-range Geometry
Encoding Volumes for Stereo Matching . IEEE TPAMI 2025. 
    
   
    14 
     MT  
      
      
      1.10 %  
      3.10 % 
      1.43 % 
     100.00 % 
     0.45 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    15 
     StereoBase  
      
     code  
      1.28 % 
      2.26 % 
      1.44 % 
     100.00 % 
     0.29 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen:  OpenStereo: A Comprehensive Benchmark for 
Stereo Matching and Strong Baseline . arXiv preprint arXiv:2312.00343 2023. 
    
   
    16 
     SGD-Stereo  
      
      
      1.23 % 
      2.55 % 
      1.45 % 
     100.00 % 
     0.45 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    17 
     TC-Stereo  
      
     code  
      1.29 % 
      2.33 % 
      1.46 % 
     100.00 % 
     0.09 s 
     NVIDIA RTX 3090 (Pytorch) 
      
    
   
    J. Zeng, C. Yao, Y. Wu and Y. Jia:  Temporally Consistent Stereo Matching . European conference on computer 
vision 2024. 
    
   
    18 
     DS-Stereo  
      
      
      1.23 % 
      2.64 % 
      1.47 % 
     100.00 % 
     0.35 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    J. Lin, J. Du and H. Wang:  DS-Stereo: Deep-Shallow Information 
Interaction for Stereo Matching . IEEE Robotics and Automation Letters 2025. 
    
   
    19 
     DispViT+  
      
      
      1.12 % 
      3.26 % 
      1.47 % 
     100.00 % 
     0.15 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    20 
     Depthstereo  
      
      
      1.22 % 
      2.79 % 
      1.48 % 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    21 
     FFLO-Net  
      
     code  
      1.29 % 
      2.52 % 
      1.49 % 
     100.00 % 
     0.37 s 
     NVIDIA RTX 3090 (PyTorch) 
      
    
   
     
    
   
    22 
     MoCha-V2 Beta  
      
     code  
      1.27 % 
      2.62 % 
      1.49 % 
     100.00 % 
     0.28 s 
     NVIDIA Tesla A30 (PyTorch) 
      
    
   
    Z. Chen, Y. Zhang, W. Li, B. Wang, Y. Zhao and C. Chen:  Motif Channel Opened in a White-Box: 
Stereo Matching via Motif Correlation Graph . arXiv preprint arXiv:2411.12426 2024. Z. Chen, W. Long, H. Yao, Y. Zhang, B. Wang, Y. Qin and J. Wu:  MoCha-Stereo: Motif Channel Attention 
Network for Stereo Matching . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition 2024. 
    
   
    23 
     GREAT-Selective  
      
     code  
      1.27 % 
      2.62 % 
      1.49 % 
     100.00 % 
     0.43 s 
     NVIDIA RTX 3090 (PyTorch) 
      
    
   
    J. Li, X. Chen, Z. Jiang, Q. Zhou, Y. Li and J. Wang:  Global Regulation and Excitation via 
Attention Tuning for Stereo Matching . arXiv preprint arXiv:2509.15891 2025. 
    
   
    24 
     GREAT-IGEV  
      
     code  
      1.28 % 
      2.59 % 
      1.50 % 
     100.00 % 
     0.33 s 
     NVIDIA RTX 3090 (PyTorch) 
      
    
   
    J. Li, X. Chen, Z. Jiang, Q. Zhou, Y. Li and J. Wang:  Global Regulation and Excitation via 
Attention Tuning for Stereo Matching . arXiv preprint arXiv:2509.15891 2025. 
    
   
    25 
     MatchStereo  
      
     code  
      1.34 % 
      2.32 % 
      1.50 % 
     100.00 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    T. Yan, T. Liu, X. Yang, Q. Zhao and Z. Xia:  MatchAttention: Matching the Relative 
Positions for High-Resolution Cross-View Matching . arXiv preprint arXiv:2510.14260 2025. 
    
   
    26 
     Reg-Stereo  
      
      
      1.30 % 
      2.54 % 
      1.50 % 
     100.00 % 
     0.37 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    L. Zhu, E. Rigall, Y. Gao, Z. Zhang, Y. Bai and J. Dong:  Region-Aware Driven Distribution 
Optimization for Stereo Matching . IEEE Transactions on Circuits and 
Systems for Video Technology 2025. 
    
   
    27 
     ViTAStereo  
      
     code  
      1.21 % 
      2.99 % 
      1.50 % 
     100.00 % 
     0.22 s 
     NVIDIA RTX 4090 (PyTorch) 
      
    
   
    C. Liu, Q. Chen and R. Fan:  Playing to Vision Foundation Model's 
Strengths in Stereo Matching . IEEE Transactions on Intelligent
Vehicles 2024. 
    
   
    28 
     UGIA-Selective  
      
      
      1.30 % 
      2.57 % 
      1.51 % 
     100.00 % 
     0.15 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    W. Xiao and W. Zhao:  SR-Stereo \& DAPE: Stepwise Regression 
and Pre-Trained Edges for Practical Stereo 
Matching . IEEE Transactions on Intelligent 
Transportation Systems 2025. W. Xiao and W. Zhao:  Rectified Iterative Disparity for Stereo 
Matching . arXiv preprint arXiv:2406.10943 2024. 
    
   
    29 
     IGEV++  
      
     code  
      1.31 % 
      2.54 % 
      1.51 % 
     100.00 % 
     0.28 s 
     NVIDIA RTX 3090 (PyTorch) 
      
    
   
    G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang:  IGEV++: Iterative Multi-range Geometry 
Encoding Volumes for Stereo Matching . IEEE TPAMI 2025. 
    
   
    30 
     MoCha-V2 Alpha  
      
     code  
      1.35 % 
      2.40 % 
      1.52 % 
     100.00 % 
     0.33 s 
     NVIDIA Tesla A100 (Pytorch) 
      
    
   
    Z. Chen, Y. Zhang, W. Li, B. Wang, Y. Zhao and C. Chen:  Motif Channel Opened in a White-Box: 
Stereo Matching via Motif Correlation Graph . arXiv preprint arXiv:2411.12426 2024. Z. Chen, W. Long, H. Yao, Y. Zhang, B. Wang, Y. Qin and J. Wu:  MoCha-Stereo: Motif Channel Attention 
Network for Stereo Matching . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition 2024. 
    
   
    31 
     MAFNet++  
      
      
      1.33 % 
      2.53 % 
      1.53 % 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    32 
     ACVNet-ICAE  
      
      
      1.31 % 
      2.64 % 
      1.53 % 
     100.00 % 
     0.218 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    33 
     MoCha-Stereo  
      
     code  
      1.36 % 
      2.43 % 
      1.53 % 
     100.00 % 
     0.34 s 
     NVIDIA Tesla A6000 (PyTorch) 
      
    
   
    Z. Chen, W. Long, H. Yao, Y. Zhang, B. Wang, Y. Qin and J. Wu:  MoCha-Stereo: Motif Channel Attention 
Network for Stereo Matching . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition (CVPR) 2024. 
    
   
    34 
     AIO-Stereo  
      
      
      1.34 % 
      2.57 % 
      1.54 % 
     100.00 % 
     0.23 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    J. Zhou, H. Zhang, J. Yuan, P. Ye, T. Chen, H. Jiang, M. Chen and Y. Zhang:  All-in-One: Transferring Vision 
Foundation Models into Stereo Matching . arXiv preprint arXiv:2412.09912 2024. 
    
   
    35 
     DiffuVolume  
      
      
      1.35 % 
      2.51 % 
      1.54 % 
     100.00 % 
     0.36 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    D. Zheng, X. Wu, Z. Liu, J. Meng and W. Zheng:  DiffuVolume: Diffusion Model for Volume 
based Stereo Matching . arXiv preprint arXiv:2308.15989 2023. 
    
   
    36 
     GANet+ADL  
      
     code  
      1.38 % 
      2.38 % 
      1.55 % 
     100.00 % 
     0.67s 
     NVIDIA RTX 3090 (PyTorch)	 
      
    
   
    P. Xu, Z. Xiang, C. Qiao, J. Fu and T. Pu:  Adaptive Multi-Modal Cross-Entropy Loss for 
Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024. 
    
   
    37 
     Selective-IGEV  
      
     code  
      1.33 % 
      2.61 % 
      1.55 % 
     100.00 % 
     0.24 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    X. Wang, G. Xu, H. Jia and X. Yang:  Selective-Stereo: Adaptive Frequency 
Information Selection for Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024. 
    
   
    38 
     MC-Stereo  
      
     code  
      1.36 % 
      2.51 % 
      1.55 % 
     100.00 % 
     0.40 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    M. Feng, J. Cheng, H. Jia, L. Liu, G. Xu and X. Yang:  MC-Stereo: Multi-peak Lookup and Cascade
Search Range for Stereo Matching . International Conference on 3D Vision
(3DV) 2024. 
    
   
    39 
     VMStereo-Base  
      
      
      1.38 % 
      2.44 % 
      1.55 % 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    40 
     SR Stereo_32_update  
      
      
      1.37 % 
      2.49 % 
      1.56 % 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    W. Xiao and W. Zhao:  SR-Stereo \& DAPE: Stepwise Regression and 
Pre-Trained Edges for Practical Stereo Matching . IEEE Transactions on Intelligent 
Transportation Systems 2025. 
    
   
    41 
     frequence-stereo  
      
      
      1.24 % 
      3.18 % 
      1.56 % 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    42 
     TEST  
      
      
      1.36 % 
      2.57 % 
      1.56 % 
     100.00 % 
     0.48 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    43 
     MTStereo  
      
      
      1.36 % 
      2.57 % 
      1.56 % 
     100.00 % 
     0.48 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    44 
     ForeEdge-Stereo  
      
      
      1.38 % 
      2.47 % 
      1.56 % 
     100.00 % 
     0.37 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    45 
     HSGC-Stereo(wo SCE)  
      
      
      1.39 % 
      2.46 % 
      1.57 % 
     100.00 % 
     1.76 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    46 
     HART  
      
     code  
      1.39 % 
      2.49 % 
      1.57 % 
     100.00 % 
     0.25 s 
     NVIDIA Tesla A100 (PyTorch) 
      
    
   
    Z. Chen, Y. Zhang, W. Li, B. Wang, Y. Wu, Y. Zhao and C. Chen:  Hadamard Attention Recurrent Transformer: 
A Strong Baseline for Stereo Matching Transformer . arXiv preprint arXiv:2501.01023 2025. 
    
   
    47 
     DMIO  
      
      
      1.34 % 
      2.74 % 
      1.57 % 
     100.00 % 
     0.3 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Y. Shi:  Rethinking Iterative Stereo Matching from 
Diffusion Bridge Model Perspective . arXiv preprint arXiv:2404.09051 2024. 
    
   
    48 
     middle stereo  
      
      
      1.34 % 
      2.76 % 
      1.57 % 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    49 
     MTEV  
      
      
      1.26 % 
      3.17 % 
      1.57 % 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    50 
     NMRF-Stereo  
      
     code  
      1.28 % 
      3.07 % 
      1.57 % 
     100.00 % 
     0.09 s 
     NVIDIA RTX 3090 (PyTorch) 
      
    
   
    T. Guan, C. Wang and Y. Liu:  Neural Markov Random Field for Stereo Matching . Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition 2024. 
    
   
    51 
     VIP-Stereo  
      
      
      1.40 % 
      2.46 % 
      1.58 % 
     100.00 % 
     0.40 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    52 
     SG-IGEV  
      
     code  
      1.40 % 
      2.50 % 
      1.58 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng:  The Sampling-Gaussian for stereo 
matching . 2024. 
    
   
    53 
     OpenStereo-IGEV  
      
     code  
      1.44 % 
      2.31 % 
      1.59 % 
     100.00 % 
     0.18 s 
     NVIDIA-3090 
      
    
   
    X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen:  OpenStereo: A Comprehensive Benchmark for 
Stereo Matching and Strong Baseline . arXiv preprint arXiv:2312.00343 2023. 
    
   
    54 
     RAFT-3D (CroCo)  
      
      
      1.38 % 
      2.65 % 
      1.59 % 
     100.00 % 
     1.5 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    55 
     CroCo-Stereo  
      
     code  
      1.38 % 
      2.65 % 
      1.59 % 
     100.00 % 
     0.93s 
     NVIDIA A100 
      
    
   
    P. Weinzaepfel, T. Lucas, V. Leroy, Y. Cabon, V. Arora, R. Br\'egier, G. Csurka, L. Antsfeld, B. Chidlovskii and J. Revaud:  CroCo v2: Improved Cross-view Completion 
Pre-training for Stereo Matching and Optical Flow . ICCV 2023. 
    
   
    56 
     MS-RAFT-3D+  
      
     code  
      1.38 % 
      2.65 % 
      1.59 % 
     100.00 % 
     3 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    J. Schmid, A. Jahedi, N. Senn and A. Bruhn:  MS-RAFT-3D: A Multi-Scale Architecture for Recurrent Image-Based Scene Flow . IEEE International Conference on Image Processing (ICIP) 2025. 
    
   
    57 
     IGEV-Stereo  
      
     code  
      1.38 % 
      2.67 % 
      1.59 % 
     100.00 % 
     0.18 s 
     NVIDIA RTX 3090 (PyTorch) 
      
    
   
    G. Xu, X. Wang, X. Ding and X. Yang:  Iterative Geometry Encoding Volume for 
Stereo Matching . CVPR 2023. 
    
   
    58 
     DN+ACVNet  
      
      
      1.32 % 
      2.95 % 
      1.60 % 
     100.00 % 
     0.24 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Zhang, L. Huang, X. Bai, J. Zheng, L. Gu and E. Hancock:  Exploring the Usage of Pre-trained 
Features for Stereo Matching . International Journal of Computer 
Vision 2024. 
    
   
    59 
     dilated volume  
      
      
      1.34 % 
      2.87 % 
      1.60 % 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    60 
     depth dila volume  
      
      
      1.25 % 
      3.35 % 
      1.60 % 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    61 
     WGCF-Stereo  
      
      
      1.40 % 
      2.59 % 
      1.60 % 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    62 
     LACA_RVC  
      
     code  
      1.21 % 
      3.56 % 
      1.60 % 
     100.00 % 
     0.24 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    63 
     volume rese  
      
      
      1.39 % 
      2.72 % 
      1.61 % 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    64 
     CMSF-stereo  
      
      
      1.37 % 
      2.82 % 
      1.61 % 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    65 
     UPFNet  
      
      
      1.38 % 
      2.85 % 
      1.62 % 
     100.00 % 
     0.25 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Q. Chen, B. Ge and J. Quan:  Unambiguous Pyramid Cost Volumes Fusion 
for Stereo Matching . IEEE Transactions on Circuits and 
Systems for Video Technology 2023. 
    
   
    66 
     Selective-RAFT  
      
     code  
      1.41 % 
      2.71 % 
      1.63 % 
     100.00 % 
     0.45 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    X. Wang, G. Xu, H. Jia and X. Yang:  Selective-Stereo: Adaptive Frequency 
Information Selection for Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024. 
    
   
    67 
     xcit-stereo  
      
      
      1.36 % 
      2.97 % 
      1.63 % 
     100.00 % 
     0.44 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    68 
     gaussi  
      
      
      1.51 % 
      2.24 % 
      1.63 % 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    69 
     DEFOM-Stereo_RVC  
      
     code  
      1.42 % 
      2.68 % 
      1.63 % 
     100.00 % 
     0.24 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Jiang, Z. Lou, L. Ding, R. Xu, M. Tan, W. Jiang and R. Huang:  DEFOM-Stereo: Depth Foundation Model Based 
Stereo Matching . IEEE International Conference on 
Computer Vision and Pattern Recognition (CVPR) 2025. 
    
   
    70 
     [ICCV 2025] DKT-SMoE  
      
     code  
      1.47 % 
      2.44 % 
      1.63 % 
     100.00 % 
     0.20 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Yun Wang:  learning robust stereo matching in the 
wild with selective mixture-of-experts . arXiv preprint arXiv:2507.04631 2025. 
    
   
    71 
     NMRF-light  
      
      
      1.30 % 
      3.29 % 
      1.63 % 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    72 
     RobuSTereo  
      
      
      1.43 % 
      2.67 % 
      1.64 % 
     100.00 % 
     0.20 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    73 
     GAStereo  
      
      
      1.43 % 
      2.68 % 
      1.64 % 
     100.00 % 
     0.02 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    74 
     mlt  
      
      
      1.25 % 
      3.59 % 
      1.64 % 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    75 
     WGCF-Stereo  
      
      
      1.46 % 
      2.57 % 
      1.64 % 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    76 
     StereoSA  
      
     code  
      1.36 % 
      3.09 % 
      1.65 % 
     100.00 % 
     0.06 s 
     RTX 4070S (Python) 
      
    
   
     
    
   
    77 
     M-FUSE  
      
     code  
      1.40 % 
      2.91 % 
      1.65 % 
     100.00 % 
     1.3 s 
     GPU 
      
    
   
    L. Mehl, A. Jahedi, J. Schmalfuss and A. Bruhn:  M-FUSE: Multi-frame Fusion for Scene Flow Estimation . Proc. Winter Conference on Applications of Computer Vision (WACV) 2023. 
    
   
    78 
     SF2SE3  
      
     code  
      1.40 % 
      2.91 % 
      1.65 % 
     100.00 % 
     2.7 s 
     GPU @ >3.5 Ghz (Python) 
      
    
   
    L. Sommer, P. Schröppel and T. Brox:  SF2SE3: Clustering Scene Flow into SE (3)-Motions via Proposal and Selection . DAGM German Conference on Pattern Recognition 2022. 
    
   
    79 
     LEAStereo  
      
     code  
      1.40 % 
      2.91 % 
      1.65 % 
     100.00 % 
     0.30 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond and Z. Ge:  Hierarchical Neural Architecture Search 
for Deep Stereo Matching . Advances in Neural Information 
Processing Systems 2020. 
    
   
    80 
     SplatFlow3D  
      
     code  
      1.40 % 
      2.91 % 
      1.65 % 
     100.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    B. Wang, Y. Zhang, J. Li, Y. Yu, Z. Sun, L. Liu and D. Hu:  SplatFlow: Learning Multi-frame Optical Flow via Splatting . International Journal of Computer Vision 2024. 
    
   
    81 
     LoS  
      
      
      1.42 % 
      2.81 % 
      1.65 % 
     100.00 % 
     0.19 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    K. Li, L. Wang, Y. Zhang, K. Xue, S. Zhou and Y. Guo:  LoS: Local Structure Guided Stereo 
Matching . Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR) 2024. 
    
   
    82 
     ACVNet  
      
     code  
      1.37 % 
      3.07 % 
      1.65 % 
     100.00 % 
     0.2 s 
     NVIDIA RTX 3090 (PyTorch) 
      
    
   
    G. Xu, J. Cheng, P. Guo and X. Yang:  Attention Concatenation Volume for 
Accurate and Efficient Stereo Matching . CVPR 2022. 
    
   
    83 
     HSGC-Stereo  
      
      
      1.44 % 
      2.73 % 
      1.66 % 
     100.00 % 
     1.36 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    84 
     PCWNet  
      
     code  
      1.37 % 
      3.16 % 
      1.67 % 
     100.00 % 
     0.44 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Shen, Y. Dai, X. Song, Z. Rao, D. Zhou and L. Zhang:  PCW-Net: Pyramid Combination and Warping 
Cost Volume for Stereo Matching . European Conference on Computer 
Vision(ECCV) 2022. 
    
   
    85 
     DSIGA  
      
      
      1.45 % 
      2.79 % 
      1.67 % 
     100.00 % 
     0.3 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    ERROR: Wrong syntax in BIBTEX file. 
    
   
    86 
     LaC+GANet  
      
     code  
      1.44 % 
      2.83 % 
      1.67 % 
     100.00 % 
     1.8 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    B. Liu, H. Yu and Y. Long:  Local Similarity Pattern and Cost Self-
Reassembling for Deep Stereo Matching Networks . Proceedings of the AAAI Conference on 
Artificial Intelligence 2022. 
    
   
    87 
     SGCN-Stereo  
      
      
      1.51 % 
      2.52 % 
      1.68 % 
     100.00 % 
     0.76 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    88 
     MSF-Stereo  
      
      
      1.50 % 
      2.59 % 
      1.68 % 
     100.00 % 
     0.29 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    89 
     CREStereo  
      
     code  
      1.45 % 
      2.86 % 
      1.69 % 
     100.00 % 
     0.41 s 
     GPU @ >3.5 Ghz (Python) 
      
    
   
    J. Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan and S. Liu:  Practical Stereo Matching via 
Cascaded Recurrent Network with Adaptive 
Correlation . 2022. 
    
   
    90 
     RT-MonSter++  
      
      
      1.47 % 
      2.78 % 
      1.69 % 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    91 
     LLKStereo  
      
      
      1.45 % 
      2.90 % 
      1.69 % 
     100.00 % 
     0.06 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    92 
     RTSN-P  
      
      
      1.42 % 
      3.06 % 
      1.70 % 
     100.00 % 
     0.04 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    93 
     GGEV  
      
      
      1.38 % 
      3.28 % 
      1.70 % 
     100.00 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    94 
     DuMa-Net  
      
      
      1.40 % 
      3.18 % 
      1.70 % 
     100.00 % 
     0.38 s 
     PyTorch GPU 
      
    
   
    S. Sun, R. liu and S. Sun:  Range-free disparity estimation with self-
adaptive dual-matching . IET Computer Vision . 
    
   
    95 
     cs-Stereo  
      
      
      1.46 % 
      2.92 % 
      1.70 % 
     100.00 % 
     0.37 s 
     4 cores @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    96 
     DKT-IGEV  
      
      
      1.46 % 
      3.05 % 
      1.72 % 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Zhang, J. Li, L. Huang, X. Yu, L. Gu, J. Zheng and X. Bai:  Robust Synthetic-to-Real Transfer for 
Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024. 
    
   
    97 
     Context-Stereo-I  
      
      
      1.47 % 
      3.05 % 
      1.73 % 
     100.00 % 
     0.04 s 
     NVIDIA RTX 3080 (PyTorch) 
      
    
   
     
    
   
    98 
     [ICCV 2025] SMoESter  
      
     code  
      1.50 % 
      2.88 % 
      1.73 % 
     100.00 % 
     0.20 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    J. Yun Wang:  learning robust stereo matching in the wild 
with selective mixture-of-experts . ICCV 2025. 
    
   
    99 
     Patchmatch Stereo++  
      
     code  
      1.55 % 
      2.71 % 
      1.74 % 
     100.00 % 
     0.2 s 
      
      
    
   
    W. Ren, Q. Liao, Z. Shao, X. Lin, X. Yue, Y. Zhang and Z. Lu:  Patchmatch Stereo++: Patchmatch Binocular 
Stereo with Continuous Disparity Optimization . Proceedings of the 31st ACM 
International Conference on Multimedia 2023. 
    
   
    100 
     CSPN  
      
      
      1.51 % 
      2.88 % 
      1.74 % 
     100.00 % 
     1.0 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    X. Cheng, P. Wang and R. Yang:  Learning Depth with Convolutional Spatial 
Propagation Network . IEEE Transactions on Pattern Analysis 
and Machine Intelligence(T-PAMI) 2019. 
    
   
    101 
     4D-IteraStereo  
      
      
      1.60 % 
      2.48 % 
      1.75 % 
     100.00 % 
     0.3 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    G. Han, S. Shan, Y. Xu, K. Zhang and H. Wei:  4D-IteraStereo: Stereo Matching via 
4D Cost Volume Aggregation and Iterative 
Optimization . Measurement Science and 
Technology 2025. 
    
   
    102 
     LaC+GwcNet  
      
     code  
      1.43 % 
      3.44 % 
      1.77 % 
     100.00 % 
     0. 65 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    B. Liu, H. Yu and Y. Long:  Local Similarity Pattern and Cost Self-
Reassembling for Deep Stereo Matching Networks . Proceedings of the AAAI Conference on 
Artificial Intelligence 2022. 
    
   
    103 
     GMStereo  
      
     code  
      1.49 % 
      3.14 % 
      1.77 % 
     100.00 % 
     0.17 s 
     GPU (Python) 
      
    
   
    H. Xu, J. Zhang, J. Cai, H. Rezatofighi, F. Yu, D. Tao and A. Geiger:  Unifying Flow, Stereo and Depth 
Estimation . arXiv preprint arXiv:2211.05783 2022. 
    
   
    104 
     BANet-3D  
      
      
      1.52 % 
      3.02 % 
      1.77 % 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    105 
     NLCA-Net v2  
      
     code  
      1.41 % 
      3.56 % 
      1.77 % 
     100.00 % 
     0.67 s 
     GPU @ >3.5 Ghz (Python) 
      
    
   
    Z. Rao, D. Yuchao, S. Zhelun and H. Renjie:  Rethinking Training Strategy in 
Stereo Matching . IEEE TRANSACTIONS ON NEURAL 
NETWORKS AND LEARNING SYSTEMS . 
    
   
    106 
     LightStereo  
      
      
      1.66 % 
      2.32 % 
      1.77 % 
     100.00 % 
     0.3 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
     
    
   
    107 
     GHUStereo  
      
     code  
      1.48 % 
      3.21 % 
      1.77 % 
     100.00 % 
     0.034 s 
     RTX 4070  (Python) 
      
    
   
    M. Tahmasebi, S. Huq, K. Meehan and M. McAfee:  GHUStereo: A Lightweight Real-Time Stereo Matching Network with Guided Hourglass Up-Sampling . SSRN Electronic Journal 2025. 
    
   
    108 
     Context-Stereo-I  
      
      
      1.48 % 
      3.22 % 
      1.77 % 
     100.00 % 
     0.04 s 
     NVIDIA RTX 3080 (PyTorch) 
      
    
   
     
    
   
    109 
     GANet+DSMNet  
      
      
      1.48 % 
      3.23 % 
      1.77 % 
     100.00 % 
     2.0 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah and P. Torr:  Domain-invariant Stereo Matching 
Networks . Europe Conference on Computer Vision 
(ECCV) 2020. 
    
   
    110 
     NLSDR-Net  
      
      
      1.52 % 
      3.05 % 
      1.77 % 
     100.00 % 
     0.06 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    111 
     NLSDR-Net  
      
      
      1.55 % 
      2.97 % 
      1.78 % 
     100.00 % 
     0.06 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    112 
     PFSMNet  
      
     code  
      1.54 % 
      3.02 % 
      1.79 % 
     100.00 % 
     0.31 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    K. Zeng, Y. Wang, Q. Zhu, J. Mao and H. Zhang:  Deep Progressive Fusion Stereo Network . IEEE Transactions on Intelligent 
Transportation Systems 2021. 
    
   
    113 
     Go-Stereo  
      
      
      1.51 % 
      3.16 % 
      1.79 % 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    114 
     RT-IGEV  
      
     code  
      1.48 % 
      3.37 % 
      1.79 % 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang:  IGEV++: Iterative Multi-range Geometry 
Encoding Volumes for Stereo Matching . IEEE TPAMI 2025. 
    
   
    115 
     SUW-Stereo  
      
      
      1.47 % 
      3.45 % 
      1.80 % 
     100.00 % 
     1.8 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Ren, A. Raj, M. El-Khamy and J. Lee:  SUW-Learn: Joint Supervised, 
Unsupervised, Weakly Supervised Deep Learning for 
Monocular Depth Estimation . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition Workshops 2020. 
    
   
    116 
     TemporalStereo  
      
     code  
      1.61 % 
      2.78 % 
      1.81 % 
     100.00 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Y. Zhang, M. Poggi and S. Mattoccia:  TemporalStereo: Efficient 
Spatial-Temporal Stereo Matching Network . IROS 2023. 
    
   
    117 
     Binary TTC  
      
      
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     2 s 
     GPU @ 1.0 Ghz (Python) 
      
    
   
    A. Badki, O. Gallo, J. Kautz and P. Sen:  Binary TTC: A Temporal Geofence for Autonomous 
Navigation . The IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) 2021. 
    
   
    118 
     RAFT-3D-MF  
      
      
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    119 
     SEA-Flow3D+gannet  
      
      
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     0.07 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    120 
     CamLiRAFT  
      
     code  
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     1 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Liu, T. Lu, Y. Xu, J. Liu and L. Wang:  Learning Optical Flow and Scene Flow 
with Bidirectional Camera-LiDAR Fusion . TPAMI 2023. 
    
   
    121 
     Scale-flow  
      
     code  
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     0.8 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    H. Ling, Q. Sun, Z. Ren, Y. Liu, H. Wang and Z. Wang:  Scale-flow: Estimating 3D Motion from 
Video . Proceedings of the 30th ACM 
International Conference on Multimedia 2022. 
    
   
    122 
     PAFlow  
      
      
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     0.53 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    123 
     CamLiRAFT-NR  
      
     code  
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     1 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Liu, T. Lu, Y. Xu, J. Liu and L. Wang:  Learning Optical Flow and Scene Flow 
with Bidirectional Camera-LiDAR Fusion . arXiv preprint arXiv:2303.12017 2023. 
    
   
    124 
     RAFT-3D  
      
      
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     2 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    Z. Teed and J. Deng:  RAFT-3D: Scene Flow using Rigid-Motion 
Embeddings . arXiv preprint arXiv:2012.00726 2020. 
    
   
    125 
     OAMaskFlow  
      
      
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     0.5  s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    126 
     ADFactory  
      
     code  
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Ling, Q. Sun, Y. Sun, X. Xu and X. Li:  ADFactory: An Effective Framework for 
Generalizing Optical Flow with NeRF . Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition 2024. 
    
   
    127 
     GANet-deep  
      
     code  
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     1.8 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    F. Zhang, V. Prisacariu, R. Yang and P. Torr:  GA-Net: Guided Aggregation Net for 
End-to-end Stereo Matching . Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 
(CVPR) 2019. 
    
   
    128 
     CamLiFlow  
      
     code  
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     1.2 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    H. Liu, T. Lu, Y. Xu, J. Liu, W. Li and L. Chen:  CamLiFlow: Bidirectional Camera-LiDAR Fusion for Joint 
Optical Flow and Scene Flow Estimation . CVPR 2022. 
    
   
    129 
     Stereo expansion  
      
     code  
      1.48 % 
      3.46 % 
      1.81 % 
     100.00 % 
     2 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    G. Yang and D. Ramanan:  Upgrading Optical Flow to 3D Scene Flow 
through Optical Expansion . CVPR 2020. 
    
   
    130 
     G2L-Stereo  
      
      
      1.54 % 
      3.20 % 
      1.82 % 
     100.00 % 
     0.05 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    J. Tang, G. Peng, J. Liu and B. Yu:  G2L-Stereo: Global to Local Two-Stage Real-
Time Stereo Matching Network . IEEE Transactions on Computational 
Imaging 2025. 
    
   
    131 
     [TIP25]ADStereo  
      
     code  
      1.59 % 
      2.94 % 
      1.82 % 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Y. Wang, K. Li, L. Wang, J. Hu, D. Wu and Y. Guo:  ADStereo: Efficient Stereo Matching with 
Adaptive Downsampling and Disparity Alignment . IEEE Transactions on Image Processing 2025. 
    
   
    132 
     LightStereo-H  
      
     code  
      1.60 % 
      2.92 % 
      1.82 % 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen:  Lightstereo: Channel boost is all you 
need for efficient 2d cost aggregation . ICRA 2025. 
    
   
    133 
     ESMStereo-L-gwc  
      
     code  
      1.43 % 
      3.80 % 
      1.82 % 
     100.00 % 
     0.026 s 
     RTX 4070S (Python) 
      
    
   
     
    
   
    134 
     OptStereo  
      
      
      1.50 % 
      3.43 % 
      1.82 % 
     100.00 % 
     0.10 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    H. Wang, R. Fan, P. Cai and M. Liu:  PVStereo: Pyramid voting module for 
end-to-end self-supervised stereo matching . IEEE Robotics and Automation Letters 2021. 
    
   
    135 
     BANet-2D  
      
      
      1.59 % 
      3.03 % 
      1.83 % 
     100.00 % 
     0.02 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    136 
     LoS_RVC  
      
      
      1.58 % 
      3.08 % 
      1.83 % 
     100.00 % 
     0.19 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    K. Li, L. Wang, Y. Zhang, K. Xue, S. Zhou and Y. Guo:  LoS: Local Structure Guided Stereo 
Matching . Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR) 2024. 
    
   
    137 
     NLCA-Net-3  
      
     code  
      1.45 % 
      3.78 % 
      1.83 % 
     100.00 % 
     0.44 s 
     >8 cores @ 3.5 Ghz (C/C++) 
      
    
   
    Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He:  NLCA-Net: a non-local context attention 
network for stereo matching . APSIPA Transactions on Signal and 
Information Processing 2020. 
    
   
    138 
     AMNet  
      
      
      1.53 % 
      3.43 % 
      1.84 % 
     100.00 % 
     0.9 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    X. Du, M. El-Khamy and J. Lee:  AMNet: Deep Atrous Multiscale Stereo 
Disparity Estimation Networks . 2019. 
    
   
    139 
     HCR  
      
      
      1.51 % 
      3.51 % 
      1.85 % 
     100.00 % 
     0.19 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Y. Tuming Yuan:  Hourglass cascaded recurrent stereo 
matching network . Image and Vision computing 2024. 
    
   
    140 
     [TIP25]ADStereo_fast  
      
     code  
      1.57 % 
      3.25 % 
      1.85 % 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Y. Wang, K. Li, L. Wang, J. Hu, D. Wu and Y. Guo:  ADStereo: Efficient Stereo Matching with 
Adaptive Downsampling and Disparity Alignment . IEEE Transactions on Image Processing 2025. 
    
   
    141 
     UCFNet_RVC  
      
     code  
      1.57 % 
      3.33 % 
      1.86 % 
     100.00 % 
     0.21 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang:  Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis 
and Machine Intelligence 2023. 
    
   
    142 
     LCA-Stereo  
      
      
      1.57 % 
      3.37 % 
      1.87 % 
     100.00 % 
     0.03 s 
     NVIDIA RTX 3090 (PyTorch) 
      
    
   
     
    
   
    143 
     CFNet  
      
     code  
      1.54 % 
      3.56 % 
      1.88 % 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Z. Shen, Y. Dai and Z. Rao:  CFNet: Cascade and Fused Cost Volume for 
Robust Stereo Matching . IEEE Conference on Computer Vision 
and 
Pattern Recognition (CVPR) 2021. Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang:  Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis 
and Machine Intelligence 2023. 
    
   
    144 
     RTSN  
      
      
      1.62 % 
      3.21 % 
      1.88 % 
     100.00 % 
     0.029 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    145 
     RigidMask+ISF  
      
     code  
      1.53 % 
      3.65 % 
      1.89 % 
     100.00 % 
     3.3 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    G. Yang and D. Ramanan:  Learning to Segment Rigid Motions from Two 
Frames . CVPR 2021. 
    
   
    146 
     DCVSMNet  
      
     code  
      1.60 % 
      3.33 % 
      1.89 % 
     100.00 % 
     0.053 s 
     RTX 4070S (PyTorch) 
      
    
   
    M. Tahmasebi, S. Huq, K. Meehan and M. McAfee:  DCVSMNet: Double Cost Volume Stereo Matching Network . Neurocomputing 2025. 
    
   
    147 
     AcfNet  
      
     code  
      1.51 % 
      3.80 % 
      1.89 % 
     100.00 % 
     0.48 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li and K. Yang:  Adaptive Unimodal Cost Volume Filtering for Deep 
Stereo Matching . AAAI 2020. 
    
   
    148 
     Context-Stereo  
      
     code  
      1.66 % 
      3.07 % 
      1.89 % 
     100.00 % 
     0.03 s 
     NVIDIA RTX 3080 (PyTorch) 
      
    
   
     
    
   
    149 
     RSAstereo  
      
      
      1.58 % 
      3.50 % 
      1.90 % 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    150 
     LXF-Stereo  
      
      
      1.72 % 
      2.82 % 
      1.90 % 
     100.00 % 
     0.05 s 
     GPU @ 2.0 Ghz (Python) 
      
    
   
     
    
   
    151 
     NLCA_NET_v2_RVC  
      
      
      1.51 % 
      3.97 % 
      1.92 % 
     100.00 % 
     0.67 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He:  NLCA-Net: a non-local context attention 
network for stereo matching . APSIPA Transactions on Signal and 
Information Processing 2020. 
    
   
    152 
     CDN  
      
     code  
      1.66 % 
      3.20 % 
      1.92 % 
     100.00 % 
     0.4 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Weinberger and W. Chao:  Wasserstein Distances for Stereo Disparity 
Estimation . Advances in Neural Information 
Processing Systems 2020. 
    
   
    153 
     Abc-Net  
      
      
      1.47 % 
      4.20 % 
      1.92 % 
     100.00 % 
     0.83 s 
     4 core @ 2.5 Ghz (Python) 
      
    
   
    X. Li, Y. Fan, G. Lv and H. Ma:  Area-based correlation and non-local 
attention network for stereo matching . The Visual Computer 2021. 
    
   
    154 
     LightStereo-L  
      
     code  
      1.78 % 
      2.64 % 
      1.93 % 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen:  Lightstereo: Channel boost is all you 
need for efficient 2d cost aggregation . ICRA 2025. 
    
   
    155 
     GANet-15  
      
     code  
      1.55 % 
      3.82 % 
      1.93 % 
     100.00 % 
     0.36 s 
     GPU (Pytorch) 
      
    
   
    F. Zhang, V. Prisacariu, R. Yang and P. Torr:  GA-Net: Guided Aggregation Net for 
End-to-end Stereo Matching . Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 
(CVPR) 2019. 
    
   
    156 
     PCVNet  
      
      
      1.68 % 
      3.19 % 
      1.93 % 
     100.00 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    J. Zeng, C. Yao, L. Yu, Y. Wu and Y. Jia:  Parameterized Cost Volume for Stereo 
Matching . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 2023. 
    
   
    157 
     CAL-Net  
      
      
      1.59 % 
      3.76 % 
      1.95 % 
     100.00 % 
     0.44 s 
     2 cores @ 2.5 Ghz (Python) 
      
    
   
    S. Chen, B. Li, W. Wang, H. Zhang, H. Li and Z. Wang:  Cost Affinity Learning Network for 
Stereo Matching . IEEE International Conference on 
Acoustics, Speech and Signal Processing,
               ICASSP 2021, Toronto, ON, Canada, 
June 6-11, 2021 2021. 
    
   
    158 
     CCAStereo  
      
      
      1.58 % 
      3.81 % 
      1.95 % 
     100.00 % 
     0.05 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    H. Hashemi, Y. Baleghi and M. Hassanzadeh:  Real-time stereo matching with enhanced 
geometric comprehension through cross-attention 
integration . Neurocomputing 2025. 
    
   
    159 
     NLCA-Net  
      
     code  
      1.53 % 
      4.09 % 
      1.96 % 
     100.00 % 
     0.6 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He:  NLCA-Net: a non-local context attention 
network for stereo matching . APSIPA Transactions on Signal and 
Information Processing 2020. 
    
   
    160 
     CFNet_RVC  
      
     code  
      1.65 % 
      3.53 % 
      1.96 % 
     100.00 % 
     0.22 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Z. Shen, Y. Dai and Z. Rao:  CFNet: Cascade and Fused Cost Volume for 
Robust Stereo Matching . IEEE Conference on Computer Vision 
and 
Pattern Recognition (CVPR) 2021. Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang:  Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis 
and Machine Intelligence 2023. 
    
   
    161 
     PGNet  
      
      
      1.64 % 
      3.60 % 
      1.96 % 
     100.00 % 
     0.7 s 
     1 core @ 2.5 Ghz (python) 
      
    
   
    S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai:  PGNet: Panoptic parsing guided deep stereo 
matching . Neurocomputing 2021. 
    
   
    162 
     SG-MSNet3D  
      
      
      1.61 % 
      3.81 % 
      1.98 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng:  The Sampling-Gaussian for stereo matching . 2024. 
    
   
    163 
     DPDNet_3D  
      
      
      1.59 % 
      3.95 % 
      1.98 % 
     100.00 % 
     0.2 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    164 
     HITNet  
      
     code  
      1.74 % 
      3.20 % 
      1.98 % 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    V. Tankovich, C. Häne, Y. Zhang, A. Kowdle, S. Fanello and S. Bouaziz:  HITNet: Hierarchical Iterative Tile 
Refinement Network for Real-time Stereo 
Matching . CVPR 2021. 
    
   
    165 
     SGNet  
      
      
      1.63 % 
      3.76 % 
      1.99 % 
     100.00 % 
     0.6 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai:  SGNet: Semantics Guided Deep Stereo 
Matching . Proceedings of the Asian Conference 
on Computer Vision (ACCV) 2020. 
    
   
    166 
     FIA-Net  
      
      
      1.64 % 
      3.77 % 
      1.99 % 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    167 
     CSN  
      
     code  
      1.59 % 
      4.03 % 
      2.00 % 
     100.00 % 
     0.6 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    X. Gu, Z. Fan, S. Zhu, Z. Dai, F. Tan and P. Tan:  Cascade cost volume for high-resolution 
multi-view stereo and stereo matching . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition 2020. 
    
   
    168 
     SG-PSMnet  
      
      
      1.77 % 
      3.13 % 
      2.00 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng:  The Sampling-Gaussian for stereo 
matching . 2024. 
    
   
    169 
     Fast-ACVNet+  
      
     code  
      1.70 % 
      3.53 % 
      2.01 % 
     100.00 % 
     0.05 s 
     NVIDIA RTX 3090 (PyTorch) 
      
    
   
    G. Xu, Y. Wang, J. Cheng, J. Tang and X. Yang:  Accurate and efficient stereo matching 
via attention concatenation volume . IEEE Transactions on Pattern Analysis 
and Machine Intelligence 2023. 
    
   
    170 
     CoEx  
      
     code  
      1.74 % 
      3.41 % 
      2.02 % 
     100.00 % 
     0.027 s 
     GPU RTX 2080Ti (Python) 
      
    
   
    A. Bangunharcana, J. Cho, S. Lee, I. Kweon, K. Kim and S. Kim:  Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume Excitation . 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021. 
    
   
    171 
     HD^3-Stereo  
      
     code  
      1.70 % 
      3.63 % 
      2.02 % 
     100.00 % 
     0.14 s 
     NVIDIA Pascal Titan XP 
      
    
   
    Z. Yin, T. Darrell and F. Yu:  Hierarchical Discrete Distribution Decomposition 
for Match Density Estimation . CVPR 2019. 
    
   
    172 
     SCV-Stereo  
      
     code  
      1.67 % 
      3.78 % 
      2.02 % 
     100.00 % 
     0.08 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    H. Wang, R. Fan and M. Liu:  SCV-Stereo: Learning stereo 
matching from a sparse cost volume . 2021 IEEE International Conference 
on Image Processing (ICIP) 2021. 
    
   
    173 
     AANet+  
      
     code  
      1.65 % 
      3.96 % 
      2.03 % 
     100.00 % 
     0.06 s 
     NVIDIA V100 GPU 
      
    
   
    H. Xu and J. Zhang:  AANet: Adaptive Aggregation Network
for Efficient Stereo Matching . CVPR 2020. 
    
   
    174 
     G2L-ROB  
      
      
      1.76 % 
      3.39 % 
      2.03 % 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    175 
     LightStereo-M  
      
     code  
      1.81 % 
      3.22 % 
      2.04 % 
     100.00 % 
     0.02 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen:  Lightstereo: Channel boost is all you 
need for efficient 2d cost aggregation . ICRA 2025. 
    
   
    176 
     LR-PSMNet  
      
     code  
      1.65 % 
      4.13 % 
      2.06 % 
     100.00 % 
     0.5 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    W. Chuah, R. Tennakoon, R. Hoseinnezhad, A. Bab-Hadiashar and D. Suter:  Adjusting Bias in Long Range Stereo 
Matching: A semantics guided approach . 2020. 
    
   
    177 
     iRaftStereo_RVC  
      
      
      1.88 % 
      3.03 % 
      2.07 % 
     100.00 % 
     0.5 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    H. Jiang, R. Xu and W. Jiang:  An Improved RaftStereo Trained with A 
Mixed Dataset for the Robust Vision Challenge 
2022 . arXiv preprint arXiv:2210.12785 2022. 
    
   
    178 
     PSM + SMD-Nets  
      
     code  
      1.69 % 
      4.01 % 
      2.08 % 
     100.00 % 
     0.41 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
    F. Tosi, Y. Liao, C. Schmitt and A. Geiger:  SMD-Nets: Stereo Mixture Density Networks . Conference on Computer Vision and Pattern Recognition (CVPR) 2021. 
    
   
    179 
     MDCNet  
      
      
      1.76 % 
      3.68 % 
      2.08 % 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    W. Chen, X. Jia, M. Wu and Z. Liang:  Multi-Dimensional Cooperative Network for 
Stereo Matching . IEEE Robotics and Automation Letters 2022. 
    
   
    180 
     EdgeStereo-V2  
      
      
      1.84 % 
      3.30 % 
      2.08 % 
     100.00 % 
     0.32s 
     Nvidia GTX Titan Xp 
      
    
   
    X. Song, X. Zhao, L. Fang, H. Hu and Y. Yu:  Edgestereo: An effective multi-task 
learning network for stereo matching and edge 
detection . International Journal of Computer 
Vision (IJCV) 2019. 
    
   
    181 
     SG-GwcNet-g  
      
      
      1.73 % 
      3.88 % 
      2.09 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng:  The Sampling-Gaussian for stereo matching . 2024. 
    
   
    182 
     3D-MSNet / MSNet3D   
      
     code  
      1.75 % 
      3.87 % 
      2.10 % 
     100.00 % 
     1.5s 
     Python,1080Ti 
      
    
   
    F. Shamsafar, S. Woerz, R. Rahim and A. Zell:  MobileStereoNet: Towards Lightweight Deep 
Networks for Stereo Matching . Proceedings of the IEEE/CVF Winter 
Conference on Applications of Computer Vision 2022. 
    
   
    183 
     GwcNet-g  
      
     code  
      1.74 % 
      3.93 % 
      2.11 % 
     100.00 % 
     0.32 s 
     GPU @ 2.0 Ghz (Python + C/C++) 
      
    
   
    X. Guo, K. Yang, W. Yang, X. Wang and H. Li:  Group-wise correlation stereo network . CVPR 2019. 
    
   
    184 
     SSPCVNet  
      
      
      1.75 % 
      3.89 % 
      2.11 % 
     100.00 % 
     0.9 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Z. Wu, X. Wu, X. Zhang, S. Wang and L. Ju:  Semantic Stereo Matching With Pyramid Cost
Volumes . The IEEE International Conference on
Computer Vision (ICCV) 2019. 
    
   
    185 
     WSMCnet  
      
     code  
      1.72 % 
      4.19 % 
      2.13 % 
     100.00 % 
     0.39s 
     Nvidia GTX 1070  (Pytorch) 
      
    
   
    Y. Wang, H. Wang, G. Yu, M. Yang, Y. Yuan and J. Quan:  Stereo Matching Algorithm Based on Three-Dimensional Convolutional Neural Network . Acta Optica Sinica 2019. 
    
   
    186 
     HSM-1.8x  
      
     code  
      1.80 % 
      3.85 % 
      2.14 % 
     100.00 % 
     0.14 s 
     Titan X Pascal 
      
    
   
    G. Yang, J. Manela, M. Happold and D. Ramanan:  Hierarchical Deep Stereo Matching on High-
Resolution Images . The IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR) 2019. 
    
   
    187 
     DeepPruner (best)  
      
     code  
      1.87 % 
      3.56 % 
      2.15 % 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    S. Duggal, S. Wang, W. Ma, R. Hu and R. Urtasun:  DeepPruner: Learning Efficient Stereo Matching 
via Differentiable PatchMatch . ICCV 2019. 
    
   
    188 
     Stereo-fusion-SJTU  
      
      
      1.87 % 
      3.61 % 
      2.16 % 
     100.00 % 
     0.7 s 
     Nvidia GTX Titan Xp 
      
    
   
    X. Song, X. Zhao, H. Hu and L. Fang:  EdgeStereo: A Context Integrated Residual
Pyramid Network for Stereo Matching . Asian Conference on Computer Vision 2018. 
    
   
    189 
     CAR-Stereo  
      
      
      1.86 % 
      3.72 % 
      2.17 % 
     100.00 % 
     0.01 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    190 
     AutoDispNet-CSS  
      
     code  
      1.94 % 
      3.37 % 
      2.18 % 
     100.00 % 
     0.9 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    T. Saikia, Y. Marrakchi, A. Zela, F. Hutter and T. Brox:  AutoDispNet: Improving Disparity 
Estimation with AutoML . The IEEE International Conference 
on Computer Vision (ICCV) 2019. 
    
   
    191 
     BGNet+  
      
      
      1.81 % 
      4.09 % 
      2.19 % 
     100.00 % 
     0.03 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo:  Bilateral Grid Learning for Stereo Matching 
Network . Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR) 2021. 
    
   
    192 
     Bi3D  
      
     code  
      1.95 % 
      3.48 % 
      2.21 % 
     100.00 % 
     0.48 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
    A. Badki, A. Troccoli, K. Kim, J. Kautz, P. Sen and O. Gallo:  Bi3D: Stereo Depth Estimation via Binary Classifications . The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2020. 
    
   
    193 
     EFSNet  
      
      
      1.95 % 
      3.53 % 
      2.21 % 
     100.00 % 
     0.01 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    194 
     dh  
      
      
      1.86 % 
      4.01 % 
      2.22 % 
     100.00 % 
     1.9 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    F. Zhang, V. Prisacariu, R. Yang and P. Torr:  GA-Net: Guided Aggregation Net for 
End-to-end Stereo Matching . Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 
(CVPR) 2019. 
    
   
    195 
     SENSE  
      
     code  
      2.07 % 
      3.01 % 
      2.22 % 
     100.00 % 
     0.32s 
     GPU, GTX 2080Ti 
      
    
   
    H. Jiang, D. Sun, V. Jampani, Z. Lv, E. Learned-Miller and J. Kautz:  SENSE: A Shared Encoder Network for Scene-Flow 
Estimation . The IEEE International Conference on Computer 
Vision (ICCV) 2019. 
    
   
    196 
     IINet  
      
      
      2.02 % 
      3.39 % 
      2.25 % 
     100.00 % 
     0.02 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    197 
     SegStereo  
      
     code  
      1.88 % 
      4.07 % 
      2.25 % 
     100.00 % 
     0.6 s 
     Nvidia GTX Titan Xp 
      
    
   
    G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia:  SegStereo: Exploiting Semantic 
Information for Disparity Estimation . ECCV 2018. 
    
   
    198 
     DTF_SENSE  
      
      
      2.08 % 
      3.13 % 
      2.25 % 
     100.00 % 
     0.76 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    R. Schuster, C. Unger and D. Stricker:  A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions . IEEE Winter Conference on Applications of Computer Vision (WACV) 2021. 
    
   
    199 
     DBCANet  
      
     code  
      2.02 % 
      3.44 % 
      2.26 % 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    200 
     OpenStereo-PSMNet  
      
     code  
      1.80 % 
      4.58 % 
      2.26 % 
     100.00 % 
     0.21 s 
     GPU RTX3090  
      
    
   
    X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen:  OpenStereo: A Comprehensive Benchmark for 
Stereo Matching and Strong Baseline . arXiv preprint arXiv:2312.00343 2023. 
    
   
    201 
     MCV-MFC  
      
      
      1.95 % 
      3.84 % 
      2.27 % 
     100.00 % 
     0.35 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Liang, Y. Guo, Y. Feng, W. Chen, L. Qiao, L. Zhou, J. Zhang and H. Liu:  Stereo Matching Using Multi-level Cost Volume and Multi-scale Feature Constancy . IEEE transactions on pattern analysis and machine intelligence 2019. 
    
   
    202 
     HSM-1.5x  
      
     code  
      1.95 % 
      3.93 % 
      2.28 % 
     100.00 % 
     0.085 s 
     Titan X Pascal 
      
    
   
    G. Yang, J. Manela, M. Happold and D. Ramanan:  Hierarchical Deep Stereo Matching on 
High- 
Resolution Images . The IEEE Conference on Computer 
Vision 
and Pattern Recognition (CVPR) 2019. 
    
   
    203 
     SG-MSNet2D  
      
      
      1.94 % 
      4.07 % 
      2.29 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng:  The Sampling-Gaussian for stereo matching . 2024. 
    
   
    204 
     new-distil  
      
      
      1.94 % 
      4.09 % 
      2.30 % 
     100.00 % 
     0.37 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    205 
     LightStereo-S  
      
     code  
      2.00 % 
      3.80 % 
      2.30 % 
     100.00 % 
     0.01 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen:  Lightstereo: Channel boost is all you 
need for efficient 2d cost aggregation . ICRA 2025. 
    
   
    206 
     Separable Convs  
      
     code  
      1.90 % 
      4.36 % 
      2.31 % 
     100.00 % 
     2 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    R. Rahim, F. Shamsafar and A. Zell:  Separable Convolutions for Optimizing 3D Stereo Networks . 2021 IEEE International Conference on Image Processing (ICIP) 2021. 
    
   
    207 
     Separable Convs  
      
     code  
      1.90 % 
      4.36 % 
      2.31 % 
     100.00 % 
     2 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    R. Rahim, F. Shamsafar and A. Zell:  Separable Convolutions for Optimizing 3D Stereo Networks . 2021 IEEE International Conference on Image Processing (ICIP) 2021. 
    
   
    208 
     CFP-Net  
      
     code  
      1.90 % 
      4.39 % 
      2.31 % 
     100.00 % 
     0.9 s 
     8 cores @ 2.5 Ghz (Python) 
      
    
   
    Z. Zhu, M. He, Y. Dai, Z. Rao and B. Li:  Multi-scale Cross-form Pyramid Network for Stereo Matching . arXiv preprint 2019. 
    
   
    209 
     PSMNet  
      
     code  
      1.86 % 
      4.62 % 
      2.32 % 
     100.00 % 
     0.41 s 
     Nvidia GTX Titan Xp 
      
    
   
    J. Chang and Y. Chen:  Pyramid Stereo Matching Network . arXiv preprint arXiv:1803.08669 2018. 
    
   
    210 
     GANetREF_RVC  
      
     code  
      1.88 % 
      4.58 % 
      2.33 % 
     100.00 % 
     1.62 s 
     GPU @ >3.5 Ghz (Python + C/C++) 
      
    
   
    F. Zhang, V. Prisacariu, R. Yang and P. Torr:  GA-Net: Guided Aggregation Net for End-
to-end Stereo Matching . Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition 2019. 
    
   
    211 
     TriStereoNet  
      
     code  
      1.86 % 
      4.77 % 
      2.35 % 
     100.00 % 
     0.5 s 
     Python,1080Ti 
      
    
   
    F. Shamsafar and A. Zell:  TriStereoNet: A Trinocular Framework for 
Multi-baseline Disparity Estimation . arXiv preprint arXiv:2111.12502 2021. 
    
   
    212 
     GhostStereoNet  
      
      
      2.07 % 
      4.00 % 
      2.39 % 
     100.00 % 
     0.04 s 
     GPU @ 3.0 Ghz (Python) 
      
    
   
     
    
   
    213 
     MABNet_origin  
      
     code  
      1.89 % 
      5.02 % 
      2.41 % 
     100.00 % 
     0.38 s 
     Nvidia rtx2080ti (Python) 
      
    
   
    J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu:  MABNet: A Lightweight Stereo Network 
Based on Multibranch Adjustable Bottleneck 
Module . . 
    
   
    214 
     DPDNet_2D  
      
      
      1.91 % 
      5.29 % 
      2.47 % 
     100.00 % 
     0.09 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    215 
     EFSNet-lite  
      
      
      2.15 % 
      4.13 % 
      2.48 % 
     100.00 % 
     0.01 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    216 
     EfficientRAFTStereo  
      
      
      2.10 % 
      4.41 % 
      2.48 % 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    217 
     JBFNet2  
      
      
      2.01 % 
      4.90 % 
      2.49 % 
     100.00 % 
     0.29 s 
     GPU @ 3.0 Ghz (Python) 
      
    
   
     
    
   
    218 
     JBFNet  
      
      
      2.14 % 
      4.25 % 
      2.49 % 
     100.00 % 
     0.29 s 
     GPU @ 3.0 Ghz (Python) 
      
    
   
     
    
   
    219 
     ERSCNet  
      
      
      2.11 % 
      4.46 % 
      2.50 % 
     100.00 % 
     0.28 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Anonymous:  ERSCNet . Proceedings of the European 
Conference on Computer Vision (ECCV) 2020. 
    
   
    220 
     BGNet  
      
      
      2.07 % 
      4.74 % 
      2.51 % 
     100.00 % 
     0.02 s 
     GPU @ >3.5 Ghz (Python) 
      
    
   
    B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo:  Bilateral Grid Learning for Stereo 
Matching Network . Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR) 2021. 
    
   
    221 
     EfficientStereo  
      
     code  
      2.16 % 
      4.40 % 
      2.54 % 
     100.00 % 
     0.015 s 
     NVIDIA RTX 3090 (PyTorch) 
      
    
   
    J. Tang, J. Liu, S. Ding and others:  EfficientStereo: A Real-Time 
Stereo Matching Approach Using Lightweight Feature 
Extraction and Disparity-Dimensional Convolution . 2025. 
    
   
    222 
     UberATG-DRISF  
      
      
      2.16 % 
      4.49 % 
      2.55 % 
     100.00 % 
     0.75 s 
     CPU+GPU @ 2.5 Ghz (Python) 
      
    
   
    W. Ma, S. Wang, R. Hu, Y. Xiong and R. Urtasun:  Deep Rigid Instance Scene Flow . CVPR 2019. 
    
   
    223 
     AANet  
      
     code  
      1.99 % 
      5.39 % 
      2.55 % 
     100.00 % 
     0.062 s 
     NVIDIA V100 GPU 
      
    
   
    H. Xu and J. Zhang:  AANet: Adaptive Aggregation Network
for Efficient Stereo Matching . CVPR 2020. 
    
   
    224 
     PDSNet  
      
      
      2.29 % 
      4.05 % 
      2.58 % 
     100.00 % 
     0.5 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    S. Tulyakov, A. Ivanov and F. Fleuret:  Practical Deep Stereo (PDS): Toward 
applications-friendly deep stereo matching . Proceedings of the international conference 
on Neural Information Processing Systems (NIPS) 2018. 
    
   
    225 
     DeepPruner (fast)  
      
     code  
      2.32 % 
      3.91 % 
      2.59 % 
     100.00 % 
     0.06 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    S. Duggal, S. Wang, W. Ma, R. Hu and R. Urtasun:  DeepPruner: Learning Efficient Stereo Matching 
via Differentiable PatchMatch . ICCV 2019. 
    
   
    226 
     FADNet  
      
     code  
      2.50 % 
      3.10 % 
      2.60 % 
     100.00 % 
     0.05 s 
     Tesla V100 (Python) 
      
    
   
    Q. Wang, S. Shi, S. Zheng, K. Zhao and X. Chu:  FADNet: A Fast and Accurate Network 
for Disparity Estimation . arXiv preprint arXiv:2003.10758 2020. 
    
   
    227 
     MMStereo  
      
      
      2.25 % 
      4.38 % 
      2.61 % 
     100.00 % 
     0.04 s 
     Nvidia Titan RTX (Python) 
      
    
   
    K. Shankar, M. Tjersland, J. Ma, K. Stone and M. Bajracharya:  A Learned Stereo Depth System for
Robotic Manipulation in Homes . . 
    
   
    228 
     SCV  
      
     code  
      2.22 % 
      4.53 % 
      2.61 % 
     100.00 % 
     0.36 s 
     Nvidia GTX 1080 Ti 
      
    
   
    C. Lu, H. Uchiyama, D. Thomas, A. Shimada and R. Taniguchi:  Sparse Cost Volume for Efficient 
Stereo Matching . Remote Sensing 2018. 
    
   
    229 
     WaveletStereo:  
      
      
      2.24 % 
      4.62 % 
      2.63 % 
     100.00 % 
     0.27 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Anonymous:  WaveletStereo: Learning wavelet coefficients 
for stereo matching . arXiv: Computer Vision and Pattern 
Recognition 2019. 
    
   
    230 
     RLStereo  
      
     code  
      2.09 % 
      5.38 % 
      2.64 % 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    Anonymous:  RLStereo: Real-time Stereo Matching 
based on Reinforcement Learning . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 2021. 
    
   
    231 
     BaCon-IGEV  
      
      
      2.21 % 
      4.86 % 
      2.65 % 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    232 
     AANet_RVC  
      
      
      2.23 % 
      4.89 % 
      2.67 % 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    H. Xu and J. Zhang:  AANet: Adaptive Aggregation Network for 
Efficient Stereo Matching . CVPR 2020. 
    
   
    233 
     CRL  
      
     code  
      2.48 % 
      3.59 % 
      2.67 % 
     100.00 % 
     0.47 s 
     Nvidia GTX 1080 
      
    
   
    J. Pang, W. Sun, J. Ren, C. Yang and Q. Yan:  Cascade residual learning: A two-stage 
convolutional neural network for stereo 
matching . ICCV Workshop on Geometry Meets 
Deep Learning 2017. 
    
   
    234 
     EfficientStereo_FP16  
      
     code  
      2.37 % 
      4.77 % 
      2.77 % 
     100.00 % 
     0.003 s 
     NVIDIA RTX 4090 (TensorRT) 
      
    
   
     
    
   
    235 
     BaCon-IGEV*  
      
      
      2.44 % 
      4.75 % 
      2.82 % 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    236 
     2D-MSNet / MSNet2D   
      
     code  
      2.49 % 
      4.53 % 
      2.83 % 
     100.00 % 
     0.4s 
     Python,1080Ti 
      
    
   
    F. Shamsafar, S. Woerz, R. Rahim and A. Zell:  MobileStereoNet: Towards Lightweight Deep 
Networks for Stereo Matching . Proceedings of the IEEE/CVF Winter 
Conference on Applications of Computer Vision 2022. 
    
   
    237 
     GC-NET  
      
      
      2.21 % 
      6.16 % 
      2.87 % 
     100.00 % 
     0.9 s 
     Nvidia GTX Titan X 
      
    
   
    A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach and A. Bry:  End-to-End Learning of Geometry and Context for 
Deep Stereo Regression . Proceedings of the International Conference on 
Computer Vision (ICCV) 2017. 
    
   
    238 
     DualNet  
      
     code  
      2.46 % 
      5.25 % 
      2.92 % 
     100.00 % 
     0.17 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Wang, J. Zheng, C. Zhang, Z. Zhang, K. Li, Y. Zhang and J. Hu:  DualNet: Robust Self-Supervised Stereo 
Matching with Pseudo-Label Supervision . Proceedings of the AAAI Conference on 
Artificial Intelligence 2025. 
    
   
    239 
     RoSe  
      
      
      2.65 % 
      4.36 % 
      2.94 % 
     100.00 % 
     0.17 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    240 
     PVStereo  
      
      
      2.29 % 
      6.50 % 
      2.99 % 
     100.00 % 
     0.10 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    H. Wang, R. Fan, P. Cai and M. Liu:  PVStereo: Pyramid voting module 
for end-to-end self-supervised stereo matching . IEEE Robotics and Automation 
Letters 2021. 
    
   
    241 
     LRCR  
      
      
      2.55 % 
      5.42 % 
      3.03 % 
     100.00 % 
     49.2 s 
     Nvidia GTX Titan X 
      
    
   
    Z. Jie, P. Wang, Y. Ling, B. Zhao, Y. Wei, J. Feng and W. Liu:  Left-Right Comparative Recurrent Model for 
Stereo Matching . IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR) 2018. 
    
   
    242 
     Fast DS-CS  
      
     code  
      2.83 % 
      4.31 % 
      3.08 % 
     100.00 % 
     0.02 s 
     GPU @ 2.0 Ghz (Python + C/C++) 
      
    
   
    K. Yee and A. Chakrabarti:  Fast Deep Stereo with 2D Convolutional 
Processing of Cost Signatures . WACV 2020 (to appear). 
    
   
    243 
     AdaStereo  
      
      
      2.59 % 
      5.55 % 
      3.08 % 
     100.00 % 
     0.41 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    X. Song, G. Yang, X. Zhu, H. Zhou, Z. Wang and J. Shi:  AdaStereo: A Simple and Efficient 
Approach for Adaptive Stereo Matching . CVPR 2021. X. Song, G. Yang, X. Zhu, H. Zhou, Y. Ma, Z. Wang and J. Shi:  AdaStereo: An Efficient Domain-Adaptive 
Stereo Matching Approach . IJCV 2021. 
    
   
    244 
     RFlow3D+monster  
      
      
      2.51 % 
      6.04 % 
      3.09 % 
     100.00 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    245 
     RFlow3D  
      
      
      2.51 % 
      6.04 % 
      3.09 % 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    246 
     RecResNet  
      
     code  
      2.46 % 
      6.30 % 
      3.10 % 
     100.00 % 
     0.3 s 
     GPU @ NVIDIA TITAN X (Tensorflow) 
      
    
   
    K. Batsos and P. Mordohai:  RecResNet: A Recurrent Residual CNN 
Architecture for Disparity Map Enhancement .  In International Conference on 3D 
Vision (3DV)  2018. 
    
   
    247 
     Syn2Real Stereo  
      
      
      2.69 % 
      5.20 % 
      3.11 % 
     100.00 % 
     0.28 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    248 
     NVStereoNet  
      
     code  
      2.62 % 
      5.69 % 
      3.13 % 
     100.00 % 
     0.6 s 
     NVIDIA Titan Xp 
      
    
   
    N. Smolyanskiy, A. Kamenev and S. Birchfield:  On the Importance of Stereo for Accurate 
Depth Estimation: An Efficient Semi-Supervised 
Deep Neural Network Approach . arXiv preprint arXiv:1803.09719 2018. 
    
   
    249 
     DRR  
      
      
      2.58 % 
      6.04 % 
      3.16 % 
     100.00 % 
     0.4 s 
     Nvidia GTX Titan X 
      
    
   
    S. Gidaris and N. Komodakis:  Detect, Replace, Refine: Deep Structured Prediction For Pixel Wise Labeling . arXiv preprint arXiv:1612.04770 2016. 
    
   
    250 
     S2M2  
      
      
      2.61 % 
      6.31 % 
      3.23 % 
     100.00 % 
     .13 s 
     Nvidia 4090 
      
    
   
     
    
   
    251 
     DWARF  
      
      
      3.20 % 
      3.94 % 
      3.33 % 
     100.00 % 
     0.14s - 1.43s 
     TitanXP - JetsonTX2 
      
    
   
    F. Aleotti, M. Poggi, F. Tosi and S. Mattoccia:  Learning end-to-end scene flow by 
distilling single tasks knowledge . Thirty-Fourth AAAI Conference on 
Artificial Intelligence (AAAI-20) 2020. 
    
   
    252 
     SsSMnet  
      
      
      2.70 % 
      6.92 % 
      3.40 % 
     100.00 % 
     0.8 s 
     P100 
      
    
   
    Y. Zhong, Y. Dai and H. Li:  Self-Supervised Learning for Stereo 
Matching with Self-Improving Ability . arXiv:1709.00930 2017. 
    
   
    253 
     L-ResMatch  
      
     code  
      2.72 % 
      6.95 % 
      3.42 % 
     100.00 % 
     48 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    A. Shaked and L. Wolf:  Improved Stereo Matching with Constant Highway 
Networks and Reflective Loss . arXiv preprint arxiv:1701.00165 2016. 
    
   
    254 
     Displets v2  
      
     code  
      3.00 % 
      5.56 % 
      3.43 % 
     100.00 % 
     265 s 
     >8 cores @ 3.0 Ghz (Matlab + C/C++) 
      
    
   
    F. Guney and A. Geiger:  Displets: Resolving Stereo Ambiguities 
using Object Knowledge . Conference on Computer Vision and 
Pattern Recognition (CVPR) 2015. 
    
   
    255 
     LBPS  
      
     code  
      2.85 % 
      6.35 % 
      3.44 % 
     100.00 % 
     0.39 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    P. Knöbelreiter, C. Sormann, A. Shekhovtsov, F. Fraundorfer and T. Pock:  Belief Propagation Reloaded: Learning 
BP-Layers for Labeling Problems . IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR) 2020. 
    
   
    256 
     ACOSF  
      
      
      2.79 % 
      7.56 % 
      3.58 % 
     100.00 % 
     5 min 
     1 core @ 3.0 Ghz (Matlab + C/C++) 
      
    
   
    C. Li, H. Ma and Q. Liao:  Two-Stage Adaptive Object Scene Flow Using 
Hybrid CNN-CRF Model . International Conference on Pattern 
Recognition (ICPR) 2020. 
    
   
    257 
     CNNF+SGM  
      
      
      2.78 % 
      7.69 % 
      3.60 % 
     100.00 % 
     71 s 
     TESLA K40C 
      
    
   
    F. Zhang and B. Wah:  Fundamental Principles on Learning New 
Features for Effective Dense Matching . IEEE Transactions on Image 
Processing 2018. 
    
   
    258 
     PBCP  
      
      
      2.58 % 
      8.74 % 
      3.61 % 
     100.00 % 
     68 s 
     Nvidia GTX Titan X 
      
    
   
    A. Seki and M. Pollefeys:  Patch Based Confidence Prediction for 
Dense Disparity Map . British Machine Vision Conference 
(BMVC) 2016. 
    
   
    259 
     SGM-Net  
      
      
      2.66 % 
      8.64 % 
      3.66 % 
     100.00 % 
     67 s 
     Titan X 
      
    
   
    A. Seki and M. Pollefeys:  SGM-Nets: Semi-Global Matching With Neural 
Networks . CVPR 2017. 
    
   
    260 
     FSMNet  
      
      
      2.95 % 
      7.39 % 
      3.69 % 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
    
   
     
    
   
    261 
     DSMNet-synthetic  
      
      
      3.11 % 
      6.72 % 
      3.71 % 
     100.00 % 
     1.6 s 
     4 cores @ 2.5 Ghz (C/C++) 
      
    
   
    F. Zhang, X. Qi, R. Yang, V. Prisacariu, B. Wah and P. Torr:  Domain-invariant Stereo Matching 
Networks . Europe Conference on Computer Vision 
(ECCV) 2020. 
    
   
    262 
     HSM-Net_RVC  
      
     code  
      2.74 % 
      8.73 % 
      3.74 % 
     100.00 % 
     0.97 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    G. Yang, J. Manela, M. Happold and D. Ramanan:  Hierarchical deep stereo matching on 
high-resolution images . Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 2019. 
    
   
    263 
     DualNet-one stage  
      
     code  
      2.89 % 
      8.73 % 
      3.86 % 
     100.00 % 
     0.17 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Y. Wang, J. Zheng, C. Zhang, Z. Zhang, K. Li, Y. Zhang and J. Hu:  DualNet: Robust Self-Supervised Stereo 
Matching with Pseudo-Label Supervision . Proceedings of the AAAI Conference on 
Artificial Intelligence 2025. 
    
   
    264 
     MABNet_tiny  
      
     code  
      3.04 % 
      8.07 % 
      3.88 % 
     100.00 % 
     0.11 s 
     Nvidia rtx2080ti (Python) 
      
    
   
    J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu:  MABNet: A Lightweight Stereo Network 
Based on Multibranch Adjustable Bottleneck 
Module . . 
    
   
    265 
     MC-CNN-acrt  
      
     code  
      2.89 % 
      8.88 % 
      3.89 % 
     100.00 % 
     67 s 
     Nvidia GTX Titan X (CUDA, Lua/Torch7) 
      
    
   
    J. Zbontar and Y. LeCun:  Stereo Matching by Training a Convolutional 
Neural Network to Compare Image Patches . Submitted to JMLR . 
    
   
    266 
     FD-Fusion  
      
     code  
      3.22 % 
      7.44 % 
      3.92 % 
     100.00 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    M. Ferrera, A. Boulch and J. Moras:  Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations . International Conference on 3D Vision (3DV) 2019. 
    
   
    267 
     ADCPNet  
      
      
      3.27 % 
      7.58 % 
      3.98 % 
     100.00 % 
     0.007 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    H. Dai, X. Zhang, Y. Zhao, H. Sun and N. Zheng:  Adaptive Disparity Candidates Prediction 
Network for Efficient Real-Time Stereo Matching . IEEE Transactions on Circuits and 
Systems for Video Technology 2022. 
    
   
    268 
     Reversing-PSMNet  
      
     code  
      3.13 % 
      8.70 % 
      4.06 % 
     100.00 % 
     0.41 s 
     1 core @ 1.5 Ghz (Python) 
      
    
   
    F. Aleotti, F. Tosi, L. Zhang, M. Poggi and S. Mattoccia:  Reversing the cycle: self-supervised deep stereo through enhanced monocular distillation . European Conference on Computer Vision (ECCV) 2020. 
    
   
    269 
     ReaSMNet  
      
      
      3.47 % 
      7.20 % 
      4.09 % 
     100.00 % 
     0.01 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    270 
     DGS  
      
      
      3.21 % 
      8.62 % 
      4.11 % 
     100.00 % 
     0.32 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
    
   
    W. Chuah, R. Tennakoon, A. Bab-Hadiashar and D. Suter:  Achieving Domain Robustness in Stereo 
Matching Networks by Removing Shortcut Learning . arXiv preprint arXiv:2106.08486 2021. 
    
   
    271 
     PRSM  
      
     code  
      3.02 % 
     10.52 % 
      4.27 % 
     99.99 % 
     300 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    C. Vogel, K. Schindler and S. Roth:  3D Scene Flow Estimation with a
Piecewise Rigid Scene Model . ijcv 2015. 
    
   
    272 
     DispNetC  
      
     code  
      4.32 % 
      4.41 % 
      4.34 % 
     100.00 % 
     0.06 s 
     Nvidia GTX Titan X (Caffe) 
      
    
   
    N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy and T. Brox:  A Large Dataset to Train 
Convolutional Networks for 
Disparity, Optical Flow, and Scene Flow 
Estimation . CVPR 2016. 
    
   
    273 
     SGM-Forest  
      
      
      3.11 % 
     10.74 % 
      4.38 % 
     99.92 % 
     6 seconds 
     1 core @ 3.0 Ghz (Python/C/C++) 
      
    
   
    J. Schönberger, S. Sinha and M. Pollefeys:  Learning to Fuse Proposals from Multiple Scanline Optimizations in Semi-Global Matching . European Conference on Computer Vision (ECCV) 2018. 
    
   
    274 
     Pseudo-Stereo  
      
      
      2.93 % 
     11.67 % 
      4.39 % 
     100.00 % 
     0.45 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    275 
     SSF  
      
      
      3.55 % 
      8.75 % 
      4.42 % 
     100.00 % 
     5 min 
     1 core @ 2.5 Ghz (Matlab + C/C++) 
      
    
   
    Z. Ren, D. Sun, J. Kautz and E. Sudderth:  Cascaded Scene Flow Prediction using 
Semantic Segmentation . International Conference on 3D Vision 
(3DV) 2017. 
    
   
    276 
     SMV  
      
      
      3.45 % 
      9.32 % 
      4.43 % 
     100.00 % 
     0.5 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    W. Yuan, Y. Zhang, B. Wu, S. Zhu, P. Tan, M. Wang and Q. Chen:  Stereo Matching by Self-
supervision of Multiscopic Vision . IEEE/RSJ International 
Conference on Intelligent Robots and
               Systems (IROS) 2021. 
    
   
    277 
     ISF  
      
      
      4.12 % 
      6.17 % 
      4.46 % 
     100.00 % 
     10 min 
     1 core @ 3 Ghz (C/C++) 
      
    
   
    A. Behl, O. Jafari, S. Mustikovela, H. Alhaija, C. Rother and A. Geiger:  Bounding Boxes, Segmentations and Object 
Coordinates: How Important is Recognition for 3D 
Scene Flow Estimation in Autonomous Driving 
Scenarios? . International Conference on Computer 
Vision (ICCV) 2017. 
    
   
    278 
     Content-CNN  
      
      
      3.73 % 
      8.58 % 
      4.54 % 
     100.00 % 
     1 s 
     Nvidia GTX Titan X (Torch) 
      
    
   
    W. Luo, A. Schwing and R. Urtasun:  Efficient Deep Learning for Stereo Matching . CVPR 2016. 
    
   
    279 
     BaCon-IGEV-zeroshot  
      
      
      2.89 % 
     13.19 % 
      4.60 % 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    280 
     MADnet  
      
     code  
      3.75 % 
      9.20 % 
      4.66 % 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    A. Tonioni, F. Tosi, M. Poggi, S. Mattoccia and L. Di Stefano:  Real-Time self-adaptive deep stereo . The IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) 2019. 
    
   
    281 
     Self-SuperFlow-ft  
      
      
      3.81 % 
      8.92 % 
      4.66 % 
     100.00 % 
     0.13 s 
     GTX 1080 Ti 
      
    
   
    K. Bendig, R. Schuster and D. Stricker:  Self-SuperFlow: Self-supervised Scene Flow Prediction in 
Stereo Sequences . International Conference on Image Processing (ICIP) 2022. 
    
   
    282 
     DTF_PWOC  
      
      
      3.91 % 
      8.57 % 
      4.68 % 
     100.00 % 
     0.38 s 
     RTX 2080 Ti 
      
    
   
    R. Schuster, C. Unger and D. Stricker:  A Deep Temporal Fusion Framework for Scene Flow Using a Learnable Motion Model and Occlusions . IEEE Winter Conference on Applications of Computer Vision (WACV) 2021. 
    
   
    283 
     P3SNet+  
      
     code  
      4.15 % 
      7.59 % 
      4.72 % 
     100.00 % 
     0.01 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
    A. Emlek and M. Peker:  P3SNet: Parallel Pyramid Pooling Stereo 
Network . IEEE Transactions on Intelligent 
Transportation Systems 2023. 
    
   
    284 
     VN  
      
      
      4.29 % 
      7.65 % 
      4.85 % 
     100.00 % 
     0.5 s 
     GPU @ 3.5 Ghz (Python + C/C++) 
      
    
   
    P. Knöbelreiter and T. Pock:  Learned Collaborative Stereo Refinement . German Conference on Pattern Recognition (GCPR) 2019. 
    
   
    285 
     MC-CNN-WS  
      
     code  
      3.78 % 
     10.93 % 
      4.97 % 
     100.00 % 
     1.35 s 
     1 core 2.5 Ghz + K40 NVIDIA, Lua-Torch 
      
    
   
    S. Tulyakov, A. Ivanov and F. Fleuret:  Weakly supervised learning of deep 
metrics for stereo reconstruction . ICCV 2017. 
    
   
    286 
     3DMST  
      
      
      3.36 % 
     13.03 % 
      4.97 % 
     100.00 % 
     93 s 
     1 core @ >3.5 Ghz (C/C++) 
      
    
   
    X. Lincheng Li and L. Zhang:  3D Cost Aggregation with Multiple Minimum 
Spanning Trees for Stereo Matching . submitted to Applied Optics . 
    
   
    287 
     CBMV_ROB  
      
     code  
      3.55 % 
     12.09 % 
      4.97 % 
     100.00 % 
     250 s 
     6 core @ 3.0 Ghz (Python + C/C++) 
      
    
   
    K. Batsos, C. Cai and P. Mordohai:  CBMV: A Coalesced Bidirectional Matching 
Volume for Disparity Estimation . IEEE Conference on Computer Vision and 
Pattern Recognition (CVPR) 2018. 
    
   
    288 
     OAUSM  
      
      
      3.51 % 
     12.56 % 
      5.02 % 
     100.00 % 
     0.33 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    289 
     Un-ViTAStereo  
      
      
      3.58 % 
     12.30 % 
      5.03 % 
     100.00 % 
     0.22 s 
     GPU @ 1.0 Ghz (Python) 
      
    
   
     
    
   
    290 
     OSF+TC  
      
      
      4.11 % 
      9.64 % 
      5.03 % 
     100.00 % 
     50 min 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    M. Neoral and J. Šochman:  Object Scene Flow with Temporal 
Consistency . 22nd Computer Vision Winter 
Workshop (CVWW) 2017. 
    
   
    291 
     P3SNet  
      
     code  
      4.40 % 
      8.28 % 
      5.05 % 
     100.00 % 
     0.01 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    A. Emlek and M. Peker:  P3SNet: Parallel Pyramid Pooling Stereo 
Network . IEEE Transactions on Intelligent 
Transportation Systems 2023. 
    
   
    292 
     CBMV  
      
     code  
      4.17 % 
      9.53 % 
      5.06 % 
     100.00 % 
     250 s 
     6 cores @ 3.0 Ghz (Python,C/C++,CUDA Nvidia TitanX) 
      
    
   
    K. Batsos, C. Cai and P. Mordohai:  CBMV: A Coalesced Bidirectional Matching 
Volume for Disparity Estimation . 2018. 
    
   
    293 
     PWOC-3D  
      
     code  
      4.19 % 
      9.82 % 
      5.13 % 
     100.00 % 
     0.13 s 
     GTX 1080 Ti 
      
    
   
    R. Saxena, R. Schuster, O. Wasenmüller and D. Stricker:  PWOC-3D: Deep Occlusion-Aware End-to-End Scene Flow Estimation . Intelligent Vehicles Symposium (IV) 2019. 
    
   
    294 
     EfficientStereo_INT8  
      
     code  
      4.91 % 
      6.49 % 
      5.17 % 
     100.00 % 
     0.005 s 
     NVIDIA RTX 4090 (TensorRT) 
      
    
   
     
    
   
    295 
     stereoVAE  
      
     code  
      4.25 % 
     10.18 % 
      5.23 % 
     100.00 % 
     0.03 s 
     Jetson AGX Xavier GPU 
      
    
   
    Q. Chang, X. Li, X. Xu, X. Liu, Y. Li and J. Miyazaki:  StereoVAE: A lightweight stereo-matching 
system using embedded GPUs . 2023 IEEE International Conference on 
Robotics and Automation (ICRA) 2023. 
    
   
    296 
     IFUSM-Stereo  
      
      
      3.93 % 
     11.78 % 
      5.24 % 
     100.00 % 
     0.33 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    297 
     PUI-Stereo2  
      
      
      3.60 % 
     13.48 % 
      5.24 % 
     100.00 % 
     0.33 s 
     1 core @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    298 
     OSF 2018  
      
     code  
      4.11 % 
     11.12 % 
      5.28 % 
     100.00 % 
     390 s 
     1 core @ 2.5 Ghz (Matlab + C/C++) 
      
    
   
    M. Menze, C. Heipke and A. Geiger:  Object Scene Flow . ISPRS Journal of Photogrammetry and Remote Sensing (JPRS) 2018. 
    
   
    299 
     SPS-St  
      
     code  
      3.84 % 
     12.67 % 
      5.31 % 
     100.00 % 
     2 s 
     1 core @ 3.5 Ghz (C/C++) 
      
    
   
    K. Yamaguchi, D. McAllester and R. Urtasun:  Efficient Joint Segmentation, Occlusion Labeling, 
Stereo and Flow Estimation . ECCV 2014. 
    
   
    300 
     MDP  
      
      
      4.19 % 
     11.25 % 
      5.36 % 
     100.00 % 
     11.4 s 
     4 cores @ 3.5 Ghz (Matlab + C/C++) 
      
    
   
    A. Li, D. Chen, Y. Liu and Z. Yuan:  Coordinating Multiple Disparity Proposals for Stereo Computation . IEEE Conference on Computer Vision and Pattern Recognition 2016. 
    
   
    301 
     PUI-Stereo  
      
      
      3.62 % 
     14.24 % 
      5.39 % 
     99.99 % 
     0.33 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    302 
     SFF++  
      
      
      4.27 % 
     12.38 % 
      5.62 % 
     100.00 % 
     78 s 
     4 cores @ 3.5 Ghz (C/C++) 
      
    
   
    R. Schuster, O. Wasenmüller, C. Unger, G. Kuschk and D. Stricker:  SceneFlowFields++: Multi-frame Matching, Visibility Prediction, and Robust Interpolation for Scene Flow Estimation . International Journal of Computer Vision (IJCV) 2019. 
    
   
    303 
     TinyStereo  
      
      
      4.99 % 
      9.33 % 
      5.71 % 
     100.00 % 
     0.02 s 
     Jetson AGX Xavier GPU 
      
    
   
    Q. Chang, X. Xu, A. Zha, M. Er, Y. Sun and Y. Li:  TinyStereo: A Tiny Coarse-to-Fine 
Framework for Vision-Based Depth Estimation on 
Embedded GPUs . IEEE Transactions on Systems, Man, and 
Cybernetics: Systems 2024. 
    
   
    304 
     OSF  
      
     code  
      4.54 % 
     12.03 % 
      5.79 % 
     100.00 % 
     50 min 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    M. Menze and A. Geiger:  Object Scene Flow for Autonomous Vehicles . Conference on Computer Vision and Pattern Recognition (CVPR) 2015. 
    
   
    305 
     pSGM  
      
      
      4.84 % 
     11.64 % 
      5.97 % 
     100.00 % 
     7.77 s 
     4 cores @ 3.5 Ghz (C/C++) 
      
    
   
    Y. Lee, M. Park, Y. Hwang, Y. Shin and C. Kyung:  Memory-Efficient Parametric Semiglobal 
Matching . IEEE Signal Processing Letters 2018. 
    
   
    306 
     CSF  
      
      
      4.57 % 
     13.04 % 
      5.98 % 
     99.99 % 
     80 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    Z. Lv, C. Beall, P. Alcantarilla, F. Li, Z. Kira and F. Dellaert:  A Continuous Optimization Approach for 
Efficient and Accurate Scene Flow . European Conf. on Computer Vision 
(ECCV) 2016. 
    
   
    307 
     MBM  
      
      
      4.69 % 
     13.05 % 
      6.08 % 
     100.00 % 
     0.13 s 
     1 core @ 3.0 Ghz (C/C++) 
      
    
   
    N. Einecke and J. Eggert:  A Multi-Block-Matching Approach for Stereo . IV 2015. 
    
   
    308 
     CRD-Fusion  
      
     code  
      4.59 % 
     13.68 % 
      6.11 % 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    X. Fan, S. Jeon and B. Fidan:  Occlusion-Aware Self-Supervised Stereo 
Matching with Confidence Guided Raw Disparity 
Fusion . Conference on Robots and Vision 2022. 
    
   
    309 
     PR-Sceneflow  
      
     code  
      4.74 % 
     13.74 % 
      6.24 % 
     100.00 % 
     150 s 
     4 core @ 3.0 Ghz (Matlab + C/C++) 
      
    
   
    C. Vogel, K. Schindler and S. Roth:  Piecewise Rigid Scene Flow . ICCV 2013. 
    
   
    310 
     DispSegNet  
      
      
      4.20 % 
     16.97 % 
      6.33 % 
     100.00 % 
     0.9 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    J. Zhang, K. Skinner, R. Vasudevan and M. Johnson-Roberson:  DispSegNet: Leveraging Semantics for End-
to-End Learning of Disparity Estimation From 
Stereo Imagery . IEEE Robotics and Automation Letters 2019. 
    
   
    311 
     DeepCostAggr  
      
     code  
      5.34 % 
     11.35 % 
      6.34 % 
     99.98 % 
     0.03 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    A. Kuzmin, D. Mikushin and V. Lempitsky:  End-to-end Learning of Cost-Volume Aggregation 
for 
Real-time Dense Stereo . 2017 IEEE 27th International Workshop on 
Machine Learning for Signal Processing (MLSP) 2017. 
    
   
    312 
     SGM_RVC  
      
      
      5.06 % 
     13.00 % 
      6.38 % 
     100.00 % 
     0.11 s 
     Nvidia GTX 980 
      
    
   
    H. Hirschm\"uller:  Stereo Processing by Semi-Global 
Matching and Mutual Information . IEEE Transactions on Pattern 
Analysis and Machine Intelligence 2008. 
    
   
    313 
     UHP  
      
      
      5.00 % 
     13.70 % 
      6.45 % 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (C/C++) 
      
    
   
    R. Yang, X. Li, R. Cong and J. Du:  Unsupervised Hierarchical Iterative Tile 
Refinement Network with 3D Planar Segmentation 
Loss . IEEE Robotics and Automation Letters 2024. 
    
   
    314 
     SceneFFields  
      
      
      5.12 % 
     13.83 % 
      6.57 % 
     100.00 % 
     65 s 
     4 cores @ 3.7 Ghz (C/C++) 
      
    
   
    R. Schuster, O. Wasenmüller, G. Kuschk, C. Bailer and D. Stricker:  SceneFlowFields: Dense Interpolation of Sparse Scene Flow Correspondences . IEEE Winter Conference on Applications of Computer Vision (WACV) 2018. 
    
   
    315 
     SPS+FF++  
      
     code  
      5.47 % 
     12.19 % 
      6.59 % 
     100.00 % 
     36 s 
     1 core @ 3.5 Ghz (C/C++) 
      
    
   
    R. Schuster, O. Wasenmüller and D. Stricker:  Dense Scene Flow from Stereo Disparity and Optical Flow . ACM Computer Science in Cars Symposium (CSCS) 2018. 
    
   
    316 
     Flow2Stereo  
      
      
      5.01 % 
     14.62 % 
      6.61 % 
     99.97 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    P. Liu, I. King, M. Lyu and J. Xu:  Flow2Stereo: Effective Self-Supervised 
Learning of Optical Flow and Stereo Matching . CVPR 2020. 
    
   
    317 
     FSF+MS  
      
      
      5.72 % 
     11.84 % 
      6.74 % 
     100.00 % 
     2.7 s 
     4 cores @ 3.5 Ghz (C/C++) 
      
    
   
    T. Taniai, S. Sinha and Y. Sato:  Fast Multi-frame Stereo Scene Flow 
with Motion Segmentation . IEEE Conference on Computer Vision 
and Pattern Recognition (CVPR 2017) 2017. 
    
   
    318 
     AABM  
      
      
      4.88 % 
     16.07 % 
      6.74 % 
     100.00 % 
     0.08 s 
     1 core @ 3.0 Ghz (C/C++) 
      
    
   
    N. Einecke and J. Eggert:  Stereo Image Warping for Improved Depth Estimation of Road Surfaces . IV 2013. 
    
   
    319 
     SGM+C+NL  
      
     code  
      5.15 % 
     15.29 % 
      6.84 % 
     100.00 % 
     4.5 min 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Hirschmüller:  Stereo Processing by Semiglobal Matching and Mutual Information . PAMI 2008. D. Sun, S. Roth and M. Black:  A Quantitative Analysis of Current Practices in Optical Flow Estimation and the Principles Behind Them . IJCV 2013. 
    
   
    320 
     SGM+LDOF  
      
     code  
      5.15 % 
     15.29 % 
      6.84 % 
     100.00 % 
     86 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Hirschmüller:  Stereo Processing by Semiglobal Matching and Mutual Information . PAMI 2008. T. Brox and J. Malik:  Large Displacement Optical Flow: Descriptor Matching in Variational Motion Estimation . PAMI 2011. 
    
   
    321 
     SGM+SF  
      
      
      5.15 % 
     15.29 % 
      6.84 % 
     100.00 % 
     45 min 
     16 core @ 3.2 Ghz (C/C++) 
      
    
   
    H. Hirschmüller:  Stereo Processing by Semiglobal Matching 
and Mutual Information . PAMI 2008. M. Hornacek, A. Fitzgibbon and C. Rother:  SphereFlow: 6 
DoF Scene Flow from RGB-D Pairs . CVPR 2014. 
    
   
    322 
     WT-kan  
      
     code  
      5.15 % 
     16.09 % 
      6.97 % 
     100.00 % 
     0.12 s 
     gpu @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    323 
     SNCC  
      
      
      5.36 % 
     16.05 % 
      7.14 % 
     100.00 % 
     0.08 s 
     1 core @ 3.0 Ghz (C/C++) 
      
    
   
    N. Einecke and J. Eggert:  A Two-Stage Correlation Method for Stereoscopic Depth Estimation . DICTA 2010. 
    
   
    324 
     Permutation Stereo  
      
      
      5.53 % 
     15.47 % 
      7.18 % 
     99.93 % 
     30 s 
     GPU @ 2.5 Ghz (Matlab) 
      
    
   
    P. Brousseau and S. Roy:  A Permutation Model for the Self-
Supervised Stereo Matching Problem . 2022 19th Conference on Robots and 
Vision (CRV) 2022. 
    
   
    325 
     PASMnet  
      
     code  
      5.41 % 
     16.36 % 
      7.23 % 
     100.00 % 
     0.5 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    L. Wang, Y. Guo, Y. Wang, Z. Liang, Z. Lin, J. Yang and W. An:  Parallax Attention for 
Unsupervised 
Stereo Correspondence Learning . IEEE Transactions on Pattern 
Analysis and Machine Intelligence(T-PAMI) 2020. 
    
   
    326 
     AAFS  
      
      
      6.27 % 
     13.95 % 
      7.54 % 
     100.00 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Chang, P. Chang and Y. Chen:  Attention-Aware Feature Aggregation for 
Real-time Stereo Matching on Edge Devices . Proceedings of the Asian Conference 
on Computer Vision 2020. 
    
   
    327 
     Z2ZNCC  
      
     code  
      6.55 % 
     13.19 % 
      7.65 % 
     99.93 % 
     0.035s 
     Jetson TX2 GPU @ 1.0 Ghz (CUDA) 
      
    
   
    Q. Chang, A. Zha, W. Wang, X. Liu, M. Onishi, L. Lei, M. Er and T. Maruyama:  Efficient stereo matching on embedded 
GPUs with zero-means cross correlation . Journal of Systems Architecture 2022. 
    
   
    328 
     ReS2tAC  
      
      
      6.27 % 
     16.07 % 
      7.90 % 
     86.03 % 
     0.06 s 
     Jetson AGX GPU @ 1.5 Ghz (C/C++) 
      
    
   
    B. Ruf, J. Mohrs, M. Weinmann, S. Hinz and J. Beyerer:  ReS2tAC - UAV-Borne Real-Time 
SGM Stereo Optimized for Embedded ARM and 
CUDA Devices . Sensors 2021. 
    
   
    329 
     SGSMnet  
      
      
      6.62 % 
     14.72 % 
      7.97 % 
     100.00 % 
     0.4 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
     
    
   
    330 
     Self-SuperFlow  
      
      
      5.78 % 
     19.76 % 
      8.11 % 
     100.00 % 
     0.13 s 
     GTX 1080 Ti 
      
    
   
    K. Bendig, R. Schuster and D. Stricker:  Self-SuperFlow: Self-supervised Scene Flow Prediction in 
Stereo Sequences . International Conference on Image Processing (ICIP) 2022. 
    
   
    331 
     CSCT+SGM+MF  
      
      
      6.91 % 
     14.87 % 
      8.24 % 
     100.00 % 
     0.0064  s 
     Nvidia GTX Titan X @ 1.0 Ghz (CUDA) 
      
    
   
    D. Hernandez-Juarez, A. Chacon, A. Espinosa, D. Vazquez, J. Moure and A. Lopez:  Embedded real-time stereo estimation via Semi-Global Matching on the GPU . Procedia Computer Science 2016. 
    
   
    332 
     MBMGPU  
      
      
      6.61 % 
     16.70 % 
      8.29 % 
     100.00 % 
     0.0019 s 
     GPU @ 1.0 Ghz (CUDA) 
      
    
   
    Q. Chang and T. Maruyama:  Real-Time Stereo Vision System: 
A Multi-Block Matching on GPU . IEEE Access 2018. 
    
   
    333 
     MeshStereo  
      
     code  
      5.82 % 
     21.21 % 
      8.38 % 
     100.00 % 
     87 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    C. Zhang, Z. Li, Y. Cheng, R. Cai, H. Chao and Y. Rui:  MeshStereo: A Global Stereo Model With 
Mesh Alignment Regularization for View 
Interpolation . The IEEE International Conference on 
Computer Vision (ICCV) 2015. 
    
   
    334 
     PCOF + ACTF  
      
      
      6.31 % 
     19.24 % 
      8.46 % 
     100.00 % 
     0.08 s 
     GPU @ 2.0 Ghz (C/C++) 
      
    
   
    M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais:  A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo . German Conference on Pattern Recognition 2016. 
    
   
    335 
     PCOF-LDOF  
      
      
      6.31 % 
     19.24 % 
      8.46 % 
     100.00 % 
     50 s 
     1 core @ 3.0 Ghz (C/C++) 
      
    
   
    M. Derome, A. Plyer, M. Sanfourche and G. Le Besnerais:  A Prediction-Correction Approach for Real-Time Optical Flow Computation Using Stereo . German Conference on Pattern Recognition 2016. 
    
   
    336 
     OASM-Net  
      
      
      6.89 % 
     19.42 % 
      8.98 % 
     100.00 % 
     0.73 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    A. Li and Z. Yuan:  Occlusion Aware Stereo Matching via Cooperative Unsupervised Learning . Proceedings of the Asian Conference on Computer Vision, ACCV 2018. 
    
   
    337 
     ELAS_RVC  
      
     code  
      7.38 % 
     21.15 % 
      9.67 % 
     100.00 % 
     0.19 s 
     4 cores @ >3.5 Ghz (C/C++) 
      
    
   
    A. Geiger, M. Roser and R. Urtasun:  Efficient Large-Scale Stereo Matching . ACCV 2010. 
    
   
    338 
     EMR-MSF  
      
      
      8.61 % 
     15.15 % 
      9.70 % 
     100.00 % 
     0.25 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    Z. Jiang and M. Okutomi:  EMR-MSF: Self-Supervised Recurrent 
Monocular Scene Flow Exploiting Ego-Motion 
Rigidity . Proceedings of the IEEE/CVF 
International Conference on Computer Vision 2023. 
    
   
    339 
     ELAS  
      
     code  
      7.86 % 
     19.04 % 
      9.72 % 
     92.35 % 
     0.3 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    A. Geiger, M. Roser and R. Urtasun:  Efficient Large-Scale Stereo Matching . ACCV 2010. 
    
   
    340 
     PGC-WCNet  
      
     code  
      7.98 % 
     18.63 % 
      9.75 % 
     99.86 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    341 
     REAF  
      
     code  
      8.43 % 
     18.51 % 
     10.11 % 
     100.00 % 
     1.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    C. Cigla:  Recursive Edge-Aware Filters for Stereo Matching . The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops 2015. 
    
   
    342 
     iGF  
      
      
      8.64 % 
     21.85 % 
     10.84 % 
     100.00 % 
     220 s 
     1 core @ 3.0 Ghz (C/C++) 
      
    
   
    R. Hamzah, H. Ibrahim and A. Hassan:  Stereo matching algorithm based on per pixel difference adjustment, iterative guided filter and graph segmentation . Journal of Visual Communication and Image Representation 2016. 
    
   
    343 
     OCV-SGBM  
      
     code  
      8.92 % 
     20.59 % 
     10.86 % 
     90.41 % 
     1.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    H. Hirschmueller:  Stereo processing by semiglobal matching
and mutual information . PAMI 2008. 
    
   
    344 
     TW-SMNet  
      
      
     11.92 % 
     12.16 % 
     11.96 % 
     100.00 % 
     0.7 s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    M. El-Khamy, H. Ren, X. Du and J. Lee:  TW-SMNet: Deep Multitask Learning of Tele-Wide Stereo Matching . arXiv:1906.04463 2019. 
    
   
    345 
     SDM  
      
      
      9.41 % 
     24.75 % 
     11.96 % 
     62.56 % 
     1 min 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Kostkova:  Stratified dense matching for stereopsis
in complex scenes . BMVC 2003. 
    
   
    346 
     SGM&FlowFie+  
      
      
     11.93 % 
     20.57 % 
     13.37 % 
     81.24 % 
     29 s 
     1 core @ 3.5 Ghz (C/C++) 
      
    
   
    R. Schuster, C. Bailer, O. Wasenmüller and D. Stricker:  Combining Stereo Disparity and Optical Flow for Basic Scene Flow . Commercial Vehicle Technology Symposium (CVTS) 2018. 
    
   
    347 
     GCSF  
      
     code  
     11.64 % 
     27.11 % 
     14.21 % 
     100.00 % 
     2.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    J. Cech, J. Sanchez-Riera and R. Horaud:  Scene Flow Estimation by growing Correspondence Seeds . CVPR 2011. 
    
   
    348 
     3DG-DVO  
      
      
     14.12 % 
     18.68 % 
     14.88 % 
     100.00 % 
     0.04 s 
     GPU @ 1.5 Ghz (Python) 
      
    
   
     
    
   
    349 
     MT-TW-SMNet  
      
      
     15.47 % 
     16.25 % 
     15.60 % 
     100.00 % 
     0.4s 
     GPU @ 2.5 Ghz (Python) 
      
    
   
    M. El-Khamy, X. Du, H. Ren and J. Lee:  Multi-Task Learning of Depth from Tele and Wide Stereo Image Pairs . Proceedings of the IEEE Conference on Image Processing 2019. 
    
   
    350 
     RAFT-MSF++  
      
      
     10.60 % 
     43.68 % 
     16.11 % 
     100.00 % 
     0.09 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
     
    
   
    351 
     Mono-SF  
      
      
     14.21 % 
     26.94 % 
     16.32 % 
     100.00 % 
     41 s 
     1 core @ 3.5 Ghz (Matlab + C/C++) 
      
    
   
    F. Brickwedde, S. Abraham and R. Mester:  Mono-SF: Multi-View Geometry meets Single-View Depth for Monocular Scene Flow Estimation of Dynamic Traffic Scenes . Proc. of International Conference on Computer Vision (ICCV) 2019. 
    
   
    352 
     CostFilter  
      
     code  
     17.53 % 
     22.88 % 
     18.42 % 
     100.00 % 
     4 min 
     1 core @ 2.5 Ghz (Matlab) 
      
    
   
    C. Rhemann, A. Hosni, M. Bleyer, C. Rother and M. Gelautz:  Fast Cost-Volume Filtering for Visual
Correspondence and Beyond . CVPR 2011. 
    
   
    353 
     MonoComb  
      
      
     17.89 % 
     21.16 % 
     18.44 % 
     100.00 % 
     0.58 s 
     RTX 2080 Ti 
      
    
   
    R. Schuster, C. Unger and D. Stricker:  MonoComb: A Sparse-to-Dense Combination Approach for Monocular Scene Flow . ACM Computer Science in Cars Symposium (CSCS) 2020. 
    
   
    354 
     DWBSF  
      
      
     19.61 % 
     22.69 % 
     20.12 % 
     100.00 % 
     7 min 
     4 cores @ 3.5 Ghz (C/C++) 
      
    
   
    C. Richardt, H. Kim, L. Valgaerts and C. Theobalt:  Dense Wide-Baseline Scene Flow 
From Two Handheld Video Cameras . 3DV 2016. 
    
   
    355 
     monoResMatch  
      
     code  
     22.10 % 
     19.81 % 
     21.72 % 
     100.00 % 
     0.16 s 
     Titan X GPU 
      
    
   
    F. Tosi, F. Aleotti, M. Poggi and S. Mattoccia:  Learning monocular depth estimation 
infusing traditional stereo knowledge . The IEEE Conference on Computer 
Vision and Pattern Recognition (CVPR) 2019. 
    
   
    356 
     Self-Mono-SF-ft  
      
     code  
     20.72 % 
     29.41 % 
     22.16 % 
     100.00 % 
     0.09 s 
     NVIDIA GTX 1080 Ti 
      
    
   
    J. Hur and S. Roth:  Self-Supervised Monocular Scene 
Flow Estimation . CVPR 2020. 
    
   
    357 
     Multi-Mono-SF-ft  
      
     code  
     21.60 % 
     28.22 % 
     22.71 % 
     100.00 % 
     0.06 s 
     NVIDIA GTX 1080 Ti 
      
    
   
    J. Hur and S. Roth:  Self-Supervised Multi-Frame 
Monocular Scene Flow . CVPR 2021. 
    
   
    358 
     OCV-BM  
      
     code  
     24.29 % 
     30.13 % 
     25.27 % 
     58.54 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    G. Bradski:  The OpenCV Library . Dr. Dobb's Journal of Software Tools 2000. 
    
   
    359 
     VSF  
      
     code  
     27.31 % 
     21.72 % 
     26.38 % 
     100.00 % 
     125 min 
     1 core @ 2.5 Ghz (C/C++) 
      
    
   
    F. Huguet and F. Devernay:  A Variational Method for Scene Flow Estimation from Stereo Sequences . ICCV 2007. 
    
   
    360 
     SED  
      
     code  
     25.01 % 
     40.43 % 
     27.58 % 
      4.02 % 
     0.68 s 
     1 core @ 2.0 Ghz (C/C++) 
      
    
   
    D. Pe\~{n}a and A. Sutherland:  Disparity Estimation by Simultaneous Edge Drawing . Computer Vision -- ACCV 2016 Workshops: ACCV 2016 International Workshops, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers, Part II 2017. 
    
   
    361 
     Multi-Mono-SF  
      
     code  
     27.48 % 
     47.30 % 
     30.78 % 
     100.00 % 
     0.06 s 
     NVIDIA GTX 1080 Ti 
      
    
   
    J. Hur and S. Roth:  Self-Supervised Multi-Frame 
Monocular Scene Flow . CVPR 2021. 
    
   
    362 
     mts1  
      
     code  
     28.03 % 
     46.55 % 
     31.11 % 
      2.52 % 
     0.18 s 
     4 cores @ 3.5 Ghz (C/C++) 
      
    
   
    R. Brandt, N. Strisciuglio, N. Petkov and M. Wilkinson:  Efficient binocular stereo 
correspondence matching with 1-D Max-Trees . Pattern Recognition Letters 2020. 
    
   
    363 
     Self-Mono-SF  
      
     code  
     31.22 % 
     48.04 % 
     34.02 % 
     100.00 % 
     0.09 s 
     NVIDIA GTX 1080 Ti 
      
    
   
    J. Hur and S. Roth:  Self-Supervised Monocular Scene 
Flow Estimation . CVPR 2020. 
    
   
    364 
     MST  
      
     code  
     45.83 % 
     38.22 % 
     44.57 % 
     100.00 % 
     7 s 
     1 core @ 2.5 Ghz (Matlab + C/C++) 
      
    
   
    Q. Yang:  A Non-Local Cost Aggregation Method 
for Stereo Matching . CVPR 2012. 
    
   
    365 
     Stereo-RSSF  
      
     code  
     56.60 % 
     73.05 % 
     59.34 % 
      9.26 % 
     2.5 s 
     8 core @ 2.5 Ghz (Matlab) 
      
    
   
    E. Salehi, A. Aghagolzadeh and R. Hosseini:  Stereo-RSSF: stereo robust sparse scene-flow estimation . The Visual Computer 2023. 
    
   
    366 
     CU-Model  
      
      
     75.89 % 
     49.98 % 
     71.58 % 
     100.00 % 
     0.99 s 
     GPU @ 1.5 Ghz (Python)