Method
Setting
Code
Translation
Rotation
Runtime
Environment
1
SOFT2
0.53 %
0.0009 [deg/m]
0.1 s
4 cores @ 2.5 Ghz (C/C++)
I. Cvišić, I. Marković and I. Petrović: SOFT2: Stereo Visual Odometry for Road Vehicles Based on a Point-to-Epipolar-Line Metric . IEEE Transactions on Robotics 2022. I. Cvišić, I. Marković and I. Petrović: Enhanced calibration of camera setups for high-performance visual odometry . Robotics and Autonomous Systems 2022. I. Cvišić, I. Marković and I. Petrović: Recalibrating the KITTI Dataset Camera Setup for Improved Odometry Accuracy . European Conference on Mobile Robots (ECMR) 2021.
2
V-LOAM
0.54 %
0.0013 [deg/m]
0.1 s
2 cores @ 2.5 Ghz (C/C++)
J. Zhang and S. Singh: Visual-lidar Odometry and Mapping: Low drift,
Robust, and Fast . IEEE International Conference on Robotics and
Automation(ICRA) 2015.
3
LOAM
0.55 %
0.0013 [deg/m]
0.1 s
2 cores @ 2.5 Ghz (C/C++)
J. Zhang and S. Singh: LOAM: Lidar Odometry and Mapping in Real-
time . Robotics: Science and Systems Conference
(RSS) 2014.
4
TVL-SLAM+
0.56 %
0.0015 [deg/m]
0.3 s
1 core @ 3.0 Ghz (C/C++)
C. Chou and C. Chou: Efficient and Accurate Tightly-Coupled
Visual-Lidar SLAM . IEEE Transactions on Intelligent
Transportation Systems 2021.
5
Traj-LIO
0.57 %
0.0015 [deg/m]
0.1 s
4 cores @ 2.5 Ghz (C/C++)
X. Zheng and J. Zhu: Traj-LIO: A Resilient Multi-LiDAR Multi-IMU
State Estimator Through Sparse Gaussian Process . arXiv preprint arXiv:2402.09189 2024.
6
CT-ICP2
code
0.58 %
0.0012 [deg/m]
0.06 s
1 core @ 3.5 Ghz (C/C++)
P. Dellenbach, J. Deschaud, B. Jacquet and F. Goulette: CT-ICP: Real-time Elastic LiDAR Odometry
with Loop Closure . 2022 International Conference on
Robotics and Automation (ICRA) 2022.
7
Traj-LO
code
0.58 %
0.0014 [deg/m]
0.1 s
4 cores @ 3.5 Ghz (C/C++)
X. Zheng and J. Zhu: Traj-LO: In Defense of LiDAR-Only
Odometry Using an Effective Continuous-Time
Trajectory . IEEE Robotics and Automation Letters 2024.
8
GLIM
0.59 %
0.0015 [deg/m]
0.1 s
GPU @ 2.5 Ghz (C/C++)
K. Koide, M. Yokozuka, S. Oishi and A. Banno: Globally Consistent 3D LiDAR Mapping with GPU-accelerated GICP Matching Cost Factors . IEEE Robotics and Automation Letters 2021.
9
Universal-SLAM
0.59 %
0.0014 [deg/m]
0.04 s
1 cores @ 2.5 Ghz (C/C++)
10
CT-ICP
code
0.59 %
0.0014 [deg/m]
0.06 s
1 core @ 3.5 Ghz (C/C++)
P. Dellenbach, J. Deschaud, B. Jacquet and F. Goulette: CT-ICP: Real-time Elastic LiDAR Odometry
with Loop Closure . 2022 International Conference on
Robotics and Automation (ICRA) 2022.
11
DG-LIO
0.59 %
0.0014 [deg/m]
0.02 s
4 cores @ >3.5 Ghz (C/C++)
12
SDV-LOAM
code
0.60 %
0.0015 [deg/m]
0.06 s
1 core @ 2.5 Ghz (C/C++)
Z. Yuan, Q. Wang, K. Cheng, T. Hao and X. Yang: SDV-LOAM: Semi-Direct Visual-LiDAR
Odometry and Mapping . IEEE Transactions on Pattern Analysis
and Machine Intelligence 2023.
13
MagneticPillars++
0.60 %
0.0018 [deg/m]
0.06 s
GPU @ >3.5 Ghz (Python)
14
CELLmap
0.61 %
0.0017 [deg/m]
0.1 s
8 core @ 2.5 Ghz (C/C++)
Y. Duan, X. Zhang, Y. Li, G. You, X. Chu, J. Ji and Y. Zhang: CELLmap: Enhancing LiDAR SLAM through
Elastic and Lightweight Spherical Map
Representation . arXiv preprint arXiv:2409.19597 2024.
15
KISS-ICP
code
0.61 %
0.0017 [deg/m]
0.05 s
1 core @ 4.5 Ghz (Python/C++)
I. Vizzo, T. Guadagnino, B. Mersch, L. Wiesmann, J. Behley and C. Stachniss: KISS-ICP: In Defense of Point-to-
Point ICP -- Simple, Accurate, and Robust
Registration If Done the Right Way . IEEE Robotics and Automation
Letters (RA-L) 2023.
16
MOLA-LO
code
0.62 %
0.0017 [deg/m]
0.05 s
4 cores @ 3.0 Ghz (C/C++)
17
SiMpLE
code
0.62 %
0.0015 [deg/m]
0.35 s
>8 cores @ 2.5 Ghz (C/C++)
V. Bhandari, T. Phillips and P. McAree: Minimal configuration point cloud
odometry and mapping . The International Journal of
Robotics Research 0.
18
MOLA (Kitti config)
0.62 %
0.0017 [deg/m]
0.05 s
4 cores @ 2.5 Ghz (C/C++)
19
PIN-SLAM
code
0.64 %
0.0015 [deg/m]
0.1 s
GPU @ >3.5 Ghz (Python)
Y. Pan, X. Zhong, L. Wiesmann, T. Posewsky, J. Behley and C. Stachniss: PIN-SLAM: LiDAR SLAM Using a Point-Based
Implicit Neural Representation for Achieving Global
Map Consistency . IEEE Transactions on Robotics (TRO) 2024.
20
filter-reg
0.65 %
0.0016 [deg/m]
0.01 s
GPU @ 2.6 Ghz (C/C++)
X. Zheng and J. Zhu: ECTLO: Effective Continuous-Time Odometry
Using Range Image for LiDAR with Small FoV . IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) 2023.
21
SOFT-SLAM
0.65 %
0.0014 [deg/m]
0.1 s
2 cores @ 2.5 Ghz (C/C++)
I. Cvišić, J. Ćesić, I. Marković and I. Petrović: SOFT-SLAM: Computationally Efficient Stereo Visual SLAM for Autonomous UAVs . Journal of Field Robotics 2017.
22
MULLS
code
0.65 %
0.0019 [deg/m]
0.08 s
4 cores @ 2.2 Ghz (C/C++)
Y. Pan, P. Xiao, Y. He, Z. Shao and Z. Li: MULLS: Versatile LiDAR SLAM via Multi-
metric Linear Least Square . IEEE International Conference on Robotics
and Automation (ICRA) 2021. .
23
MOLA-LO + LC
code
0.66 %
0.0016 [deg/m]
0.05 s
8 cores @ 2.5 Ghz (C/C++)
24
ELO
0.68 %
0.0021 [deg/m]
0.005 s
GPU @ 2.6 Ghz (C/C++)(0.027s Jetson AGX)
X. Zheng and J. Zhu: Efficient LiDAR Odometry for Autonomous
Driving . IEEE Robotics and Automation Letters(RA-
L) 2021.
25
AZZ
code
0.68 %
0.0017 [deg/m]
0,1 s
1 core @ 2.5 Ghz (C/C++)
ERROR: Wrong syntax in BIBTEX file.
26
IMLS-SLAM
0.69 %
0.0018 [deg/m]
1.25 s
1 core @ >3.5 Ghz (C/C++)
J. Deschaud: IMLS-SLAM: Scan-to-Model Matching Based
on 3D Data . 2018 IEEE International Conference on
Robotics and Automation (ICRA) 2018.
27
MC2SLAM
0.69 %
0.0016 [deg/m]
0.1 s
4 cores @ 2.5 Ghz (C/C++)
F. Neuhaus, T. Koss, R. Kohnen and D. Paulus: MC2SLAM: Real-Time Inertial Lidar
Odometry
using Two-Scan Motion Compensation . German Conference on Pattern
Recognition 2018.
28
ISC-LOAM
code
0.72 %
0.0022 [deg/m]
0.1 s
4 cores @ 3.0 Ghz (C/C++)
H. Wang, C. Wang and L. Xie: Intensity scan context: Coding intensity
and geometry relations for loop closure detection . 2020 IEEE International Conference on
Robotics and Automation (ICRA) 2020.
29
FLOAM
code
0.72 %
0.0022 [deg/m]
0.1 s
1 core @ 2.5 Ghz (C/C++)
H. Wang, C. Wang, C. Chen and L. Xie: F-LOAM : Fast LiDAR Odometry and
Mapping . 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS) 2021.
30
APMC-LOM
0.77 %
0.0019 [deg/m]
0.1 s
1 core @ 2.5 Ghz (C/C++)
31
PSF-LO
0.82 %
0.0032 [deg/m]
0.2s
4 cores @ 3.2 GHz
G. Chen, B. Wang, X. Wang, H. Deng, B. Wang and S. Zhang: PSF-LO: Parameterized
Semantic Features Based Lidar Odometry . 2021
IEEE International Conference on Robotics and
Automation (ICRA) 2021.
32
RADVO
0.82 %
0.0018 [deg/m]
0.07 s
1 core @ 3.0 Ghz (C/C++)
P. Bénet and A. Guinamard: Robust and Accurate Deterministic Visual Odometry . Proceedings of the 33rd International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2020) 2020.
33
LG-SLAM
0.82 %
0.0020 [deg/m]
0.2 s
4 cores @ 2.5 Ghz (C/C++)
K. Lenac, J. Ćesić, I. Marković and I. Petrović: Exactly sparse delayed state filter on
Lie groups for long-term pose graph SLAM . The International Journal of Robotics
Research 2018.
34
RotRocc+
0.83 %
0.0026 [deg/m]
0.25 s
2 cores @ 2.0 Ghz (C/C++)
M. Buczko and V. Willert: Flow-Decoupled Normalized Reprojection
Error for Visual Odometry . 19th IEEE Intelligent Transportation
Systems Conference (ITSC) 2016. M. Buczko, V. Willert, J. Schwehr and J. Adamy: Self-Validation for Automotive Visual
Odometry . IEEE Intelligent Vehicles Symposium
(IV) 2018. M. Buczko: Automotive Visual Odometry . 2018.
35
LIMO2_GP
code
0.84 %
0.0022 [deg/m]
0.2 s
2 cores @ 2.5 Ghz (C/C++)
J. Graeter, A. Wilczynski and M. Lauer: LIMO: Lidar-Monocular Visual Odometry . arXiv preprint arXiv:1807.07524 2018.
36
CAE-LO
code
0.86 %
0.0025 [deg/m]
2 s
8 cores @ 3.5 Ghz (Python)
D. Yin, Q. Zhang, J. Liu, X. Liang, Y. Wang, J. Maanpää, H. Ma, J. Hyyppä and R. Chen: CAE-LO: LiDAR Odometry Leveraging Fully
Unsupervised Convolutional Auto-Encoder for
Interest Point Detection and Feature Description . 2020.
37
GDVO
0.86 %
0.0031 [deg/m]
0.09 s
1 core @ >3.5 Ghz (C/C++)
J. Zhu: Image Gradient-based Joint Direct Visual Odometry for
Stereo Camera . International Joint Conference on Artificial Intelligence,
IJCAI 2017.
38
LIMO2
code
0.86 %
0.0022 [deg/m]
0.2 s
2 cores @ 2.5 Ghz (C/C++)
J. Graeter, A. Wilczynski and M. Lauer: LIMO: Lidar-Monocular Visual Odometry . arXiv preprint arXiv:1807.07524 2018.
39
CPFG-slam
0.87 %
0.0025 [deg/m]
0.03 s
4 cores @ 2.5 Ghz (C/C++)
K. Ji and T. Huiyan Chen: CPFG-SLAM:a robust Simultaneous Localization
and Mapping based on LIDAR in off-road environment . IEEE Intelligent Vehicles Symposium (IV) 2018.
40
SOFT
0.88 %
0.0022 [deg/m]
0.1 s
2 cores @ 2.5 Ghz (C/C++)
I. Cvišić and I. Petrović: Stereo odometry based on careful feature selection and tracking . European Conference on Mobile Robots (ECMR) 2015.
41
RotRocc
0.88 %
0.0025 [deg/m]
0.3 s
2 cores @ 2.0 Ghz (C/C++)
M. Buczko and V. Willert: Flow-Decoupled Normalized Reprojection Error for Visual Odometry . 19th IEEE Intelligent Transportation Systems Conference (ITSC) 2016.
42
D3VO
0.88 %
0.0021 [deg/m]
0.1 s
1 core @ 2.5 Ghz (C/C++)
N. Yang, L. Stumberg, R. Wang and D. Cremers: D3VO: Deep Depth, Deep Pose and Deep
Uncertainty for Monocular Visual Odometry . The IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) 2020.
43
PNDT LO
0.89 %
0.0030 [deg/m]
0.2 s
8 cores @ 3.5 Ghz (C/C++)
H. Hong and B. Lee: Probabilistic normal distributions
transform representation for accurate 3d point
cloud registration . IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS) 2017.
44
DVSO
0.90 %
0.0021 [deg/m]
0.1 s
GPU @ 2.5 Ghz (C/C++)
N. Yang, R. Wang, J. Stueckler and D. Cremers: Deep Virtual Stereo Odometry: Leveraging
Deep Depth Prediction for Monocular Direct Sparse
Odometry . European Conference on Computer
Vision (ECCV) 2018.
45
LIMO
code
0.93 %
0.0026 [deg/m]
0.2 s
2 cores @ 2.5 Ghz (C/C++)
J. Graeter, A. Wilczynski and M. Lauer: LIMO: Lidar-Monocular Visual Odometry . ArXiv e-prints 2018.
46
Stereo DSO
0.93 %
0.0020 [deg/m]
0.1 s
1 core @ 3.4 Ghz (C/C++)
R. Wang, M. Schw\"orer and D. Cremers: Stereo dso: Large-scale direct sparse
visual odometry with stereo cameras . International Conference on Computer
Vision (ICCV), Venice, Italy 2017.
47
IsaacElbrusGPUSLAM
0.94 %
0.0019 [deg/m]
0.007 s
Jetson AGX
A. Korovko, D. Robustov, D. Slepichev, E. Vendrovsky and S. Volodarskiy: Realtime Stereo Visual Odometry . .
48
OV2SLAM
code
0.94 %
0.0023 [deg/m]
0.01 s
1 core @ 2.5 Ghz (C/C++)
M. Ferrera, A. Eudes, J. Moras, M. Sanfourche and G. Le Besnerais: OV2SLAM : A Fully Online and Versatile Visual SLAM for Real-Time Applications . IEEE Robotics and Automation Letters 2021.
49
OV2SLAM
code
0.98 %
0.0023 [deg/m]
0.01 s
8 cores @ 3.0 Ghz (C/C++)
M. Ferrera, A. Eudes, J. Moras, M. Sanfourche and G. Le Besnerais: OV2SLAM : A Fully Online and Versatile Visual SLAM for Real-Time Applications . IEEE Robotics and Automation Letters 2021.
50
ROCC
0.98 %
0.0028 [deg/m]
0.3 s
2 cores @ 2.0 Ghz (C/C++)
M. Buczko and V. Willert: How to Distinguish Inliers from Outliers in Visual Odometry for High-speed Automotive Applications . IEEE Intelligent Vehicles Symposium (IV) 2016.
51
IsaacElbrusSLAM
0.99 %
0.0020 [deg/m]
0.008 s
3 cores @ 3.3 Ghz (C/C++)
A. Korovko, D. Robustov, D. Slepichev, E. Vendrovsky and S. Volodarskiy: Realtime Stereo Visual Odometry . .
52
SuMa-MOS
code
0.99 %
0.0033 [deg/m]
0.1s
1 core @ 2.5 Ghz (C/C++)
X. Chen, S. Li, B. Mersch, L. Wiesmann, J. Gall, J. Behley and C. Stachniss: Moving Object Segmentation in 3D LiDAR
Data: A Learning-based Approach Exploiting
Sequential Data . IEEE Robotics and Automation Letters
(RA-L) 2021.
53
SuMa++
code
1.06 %
0.0034 [deg/m]
0.1 s
1 core @ 3.5 Ghz (C/C++)
X. Chen, A. Milioto, E. Palazzolo, P. Gigu\`ere, J. Behley and C. Stachniss: SuMa++: Efficient LiDAR-based Semantic
SLAM . IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) 2019.
54
V2-SLAM
1.06 %
0.0024 [deg/m]
0.07 s
1 core @ 2.5 Ghz (C/C++)
55
ULF-ESGVI
1.07 %
0.0036 [deg/m]
0.3 s
GPU and CPU @ 2.2 Ghz (Python + C/C++)
D. Yoon, H. Zhang, M. Gridseth, H. Thomas and T. Barfoot: Unsupervised Learning of Lidar Features for Use in a Probabilistic Trajectory Estimator . IEEE Robotics and Automation Letters (RAL) 2021.
56
cv4xv1-sc
1.09 %
0.0029 [deg/m]
0.145 s
GPU @ 3.5 Ghz (C/C++)
M. Persson, T. Piccini, R. Mester and M. Felsberg: Robust Stereo Visual Odometry from
Monocular Techniques . IEEE Intelligent Vehicles Symposium 2015.
57
VINS-Fusion
code
1.09 %
0.0033 [deg/m]
0.1s
1 core @ 3.0 Ghz (C/C++)
T. Qin, J. Pan, S. Cao and S. Shen: A General Optimization-based Framework
for Local Odometry Estimation with Multiple
Sensors . 2019.
58
MonoROCC
1.11 %
0.0028 [deg/m]
1 s
2 cores @ 2.0 Ghz (C/C++)
M. Buczko and V. Willert: Monocular Outlier Detection for Visual Odometry . IEEE Intelligent Vehicles Symposium (IV) 2017.
59
vins
1.11 %
0.0023 [deg/m]
0.1 s
1 core @ 2.5 Ghz (C/C++)
60
DEMO
1.14 %
0.0049 [deg/m]
0.1 s
2 cores @ 2.5 Ghz (C/C++)
J. Zhang, M. Kaess and S. Singh: Real-time Depth Enhanced Monocular Odometry . IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS) 2014.
61
ORB-SLAM2
code
1.15 %
0.0027 [deg/m]
0.06 s
2 cores @ >3.5 Ghz (C/C++)
R. Mur-Artal and J. Tard\'os: ORB-SLAM2: an Open-Source
SLAM System for Monocular, Stereo and
RGB-D Cameras . IEEE Transactions on Robotics 2017.
62
IV-SLAM
code
1.17 %
0.0025 [deg/m]
0.1 s
GPU @ 2.5 Ghz (C/C++)
S. Rabiee and J. Biswas: IV-SLAM: Introspective Vision for Simultaneous Localization and Mapping . Conference on Robot Learning (CoRL) 2020.
63
NOTF
1.17 %
0.0035 [deg/m]
0.45 s
1 core @ 3.0 Ghz (C/C++)
J. Deigmoeller and J. Eggert: Stereo Visual Odometry without Temporal Filtering . German Conference on Pattern Recognition (GCPR) 2016.
64
S-PTAM
code
1.19 %
0.0025 [deg/m]
0.03 s
4 cores @ 3.0 Ghz (C/C++)
T. Pire, T. Fischer, G. Castro, P. De Crist\'oforis, J. Civera and J. Jacobo Berlles: S-PTAM: Stereo Parallel
Tracking and Mapping . Robotics and Autonomous
Systems (RAS) 2017. T. Pire, T. Fischer, J. Civera, P. Crist\'{o}foris and J. Jacobo-Berlles: Stereo parallel tracking and
mapping for robot localization . IROS 2015.
65
S-LSD-SLAM
code
1.20 %
0.0033 [deg/m]
0.07 s
1 core @ 3.5 Ghz (C/C++)
J. Engel, J. St\"uckler and D. Cremers: Large-Scale Direct SLAM with Stereo Cameras . Int.~Conf.~on Intelligent Robot Systems (IROS) 2015.
66
VoBa
1.22 %
0.0029 [deg/m]
0.1 s
1 core @ 2.0 Ghz (C/C++)
J. Tardif, M. George, M. Laverne, A. Kelly and A. Stentz: A new approach to vision-aided inertial navigation . 2010 IEEE/RSJ International Conference on
Intelligent Robots and
Systems, October 18-22, 2010, Taipei, Taiwan 2010.
67
STEAM-L WNOJ
1.22 %
0.0058 [deg/m]
0.2 s
1 core @ 2.5 Ghz (C/C++)
T. Tang, D. Yoon and T. Barfoot: A White-Noise-On-Jerk Motion Prior for
Continuous-Time Trajectory Estimation on SE (3) . arXiv preprint arXiv:1809.06518 2018.
68
LiViOdo
1.22 %
0.0042 [deg/m]
0.5 s
1 core @ 2.5 Ghz (C/C++)
J. Graeter, A. Wilczynski and M. Lauer: LIMO: Lidar-Monocular Visual Odometry . ArXiv e-prints 2018.
69
SLUP
1.25 %
0.0041 [deg/m]
0.17 s
4 cores @ 3.3 Ghz (C/C++)
X. Qu, B. Soheilian and N. Paparoditis: Landmark based localization in urban
environment . ISPRS Journal of Photogrammetry and
Remote Sensing 2017.
70
STEAM-L
1.26 %
0.0061 [deg/m]
0.2 s
1 core @ 2.5 Ghz (C/C++)
T. Tang, D. Yoon, F. Pomerleau and T. Barfoot: Learning a Bias Correction for Lidar-
only Motion Estimation . 15th Conference on Computer and Robot
Vision (CRV) 2018.
71
FRVO
1.26 %
0.0038 [deg/m]
0.03 s
1 core @ 3.5 Ghz (C/C++)
W. Meiqing, L. Siew-Kei and S. Thambipillai: A Framework for Fast and Robust Visual Odometry . IEEE Transaction on Intelligent Transportation Systems 2017.
72
JFBVO-FM
1.28 %
0.0010 [deg/m]
0.1 s
1 core @ 3.4 Ghz (C/C++)
R. Sardana, V. Karar and S. Poddar: Improving visual odometry pipeline with feedback from forward and backward motion estimates . Machine Vision and Applications 2023.
73
MFI
1.30 %
0.0030 [deg/m]
0.1 s
1 core @ 2.2 Ghz (C/C++)
H. Badino, A. Yamamoto and T. Kanade: Visual Odometry by Multi-frame Feature Integration . First International Workshop on Computer Vision for Autonomous Driving at ICCV 2013.
74
TLBBA
1.36 %
0.0038 [deg/m]
0.1 s
1 Core @2.8GHz (C/C++)
W. Lu, Z. Xiang and J. Liu: High-performance visual odometry with two-
stage local binocular BA and GPU . Intelligent Vehicles Symposium (IV),
2013 IEEE 2013.
75
2FO-CC
code
1.37 %
0.0035 [deg/m]
0.1 s
1 core @ 3.0 Ghz (C/C++)
I. Krešo and S. Šegvić: Improving the Egomotion Estimation by
Correcting the Calibration Bias . VISAPP 2015.
76
SALO
1.37 %
0.0051 [deg/m]
0.6 s
1 core @ 2.5 Ghz (C/C++)
D. Kovalenko, M. Korobkin and A. Minin: Sensor Aware Lidar Odometry . 2019 European Conference on Mobile Robots (ECMR) 2019.
77
SuMa
1.39 %
0.0034 [deg/m]
0.1 s
1 core @ 3.5 Ghz (C/C++)
J. Behley and C. Stachniss: Efficient Surfel-Based SLAM using 3D Laser Range Data in Urban Environments . Robotics: Science and Systems (RSS) 2018.
78
ProSLAM
code
1.39 %
0.0035 [deg/m]
0.02 s
1 core @ 3.0 Ghz (C/C++)
D. Schlegel, M. Colosi and G. Grisetti: ProSLAM: Graph SLAM from a
Programmer's Perspective . ArXiv e-prints 2017.
79
ESVO
1.42 %
0.0048 [deg/m]
1 s
1 core @ 2.5 Ghz (C/C++)
H. Nguyen, T. Nguyen, C. Tran, K. Phung and Q. Nguyen: A novel translation estimation for
essential matrix based stereo visual odometry . 2021 15th International Conference on
Ubiquitous Information Management and
Communication (IMCOM) 2021.
80
JFBVO
1.43 %
0.0038 [deg/m]
0.05 s
1 core @ 3.4 Ghz (C/C++)
R. Sardana, R. Kottath, V. Karar and S. Poddar: Joint Forward-Backward Visual
Odometry for Stereo Cameras . Proceedings of the Advances in
Robotics 2019 2019.
81
StereoSFM
code
1.51 %
0.0042 [deg/m]
0.02 s
2 cores @ 2.5 Ghz (C/C++)
H. Badino and T. Kanade: A Head-Wearable Short-Baseline Stereo System for the Simultaneous Estimation of Structure and Motion . IAPR Conference on Machine Vision Application 2011.
82
SSLAM
code
1.57 %
0.0044 [deg/m]
0.5 s
8 cores @ 3.5 Ghz (C/C++)
F. Bellavia, M. Fanfani, F. Pazzaglia and C. Colombo: Robust Selective Stereo SLAM without Loop Closure and Bundle Adjustment . ICIAP 2013 2013. F. Bellavia, M. Fanfani and C. Colombo: Selective visual odometry for accurate AUV localization . Autonomous Robots 2015. M. Fanfani, F. Bellavia and C. Colombo: Accurate Keyframe Selection and Keypoint Tracking for Robust Visual Odometry . Machine Vision and Applications 2016.
83
Stereo-RIVO
1.61 %
0.0025 [deg/m]
0.07 s
4 cores @ 2.5 Ghz (Matlab)
R. Erfan Salehi: Stereo-RIVO: Stereo-Robust Indirect Visual Odometry . Expert Systems with Applications 2023.
84
VOLDOR
code
1.65 %
0.0050 [deg/m]
0.1 s
GPU
Z. Min, Y. Yang and E. Dunn: VOLDOR: Visual Odometry From Log-Logistic
Dense Optical Flow Residuals . IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR) 2020.
85
ddvo
1.70 %
0.0064 [deg/m]
0.16 s
1 core @ 2.5 Ghz (C/C++)
86
eVO
1.76 %
0.0036 [deg/m]
0.05 s
2 cores @ 2.0 Ghz (C/C++)
M. Sanfourche, V. Vittori and G. Besnerais: eVO: A realtime embedded stereo odometry for MAV applications . IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2013.
87
Stereo DWO
code
1.76 %
0.0026 [deg/m]
0.1 s
4 cores @ 2.5 Ghz (C/C++)
J. Huai, C. Toth and D. Grejner-Brzezinska: Stereo-inertial odometry using nonlinear optimization . Proceedings of the 27th International Technical Meeting of The Satellite Division of the Institute of Navigation (ION GNSS+ 2015) 2015.
88
BVO
1.76 %
0.0036 [deg/m]
0.1 s
1 core @ 2.5GHz (Python)
F. Pereira, J. Luft, G. Ilha, A. Sofiatti and A. Susin: Backward Motion for Estimation Enhancement in Sparse Visual Odometry . 2017 Workshop of Computer Vision (WVC) 2017.
89
3DOF-SLAM
code
1.89 %
0.0083 [deg/m]
0.02 s
1 core @ 2.5 Ghz (C/C++)
M. Dimitrievski., D. Hamme., P. Veelaert. and W. Philips.: Robust Matching of Occupancy Maps for Odometry in Autonomous Vehicles . Proceedings of the 11th Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications - Volume 3: VISAPP, (VISIGRAPP 2016) 2016.
90
EfficientLO-Net
code
1.92 %
0.0052 [deg/m]
0.03 s
1 core @ 2.5 Ghz (C/C++)
G. Wang, X. Wu, S. Jiang, Z. Liu and H. Wang: Efficient 3D Deep LiDAR Odometry . arXiv preprint arXiv:2111.02135 2021.
91
D6DVO
2.04 %
0.0051 [deg/m]
0.03 s
1 core @ 2.5 Ghz (C/C++)
A. Comport, E. Malis and P. Rives: Accurate Quadrifocal Tracking for Robust 3D Visual Odometry . ICRA 2007. M. Meilland, A. Comport and P. Rives: Dense visual mapping of large scale environments for real-time localisation . ICRA 2011.
92
PMO / PbT-M2
2.05 %
0.0051 [deg/m]
1 s
1 core @ 2.5 Ghz (Python + C/C++)
N. Fanani, A. Stuerck, M. Ochs, H. Bradler and R. Mester: Predictive monocular odometry (PMO): What is possible without RANSAC and multiframe bundle adjustment? . Image and Vision Computing 2017.
93
GFM
code
2.12 %
0.0056 [deg/m]
0.03 s
2 cores @ 1.5 Ghz (C/C++)
Y. Zhao and P. Vela: Good Feature Matching: Towards Accurate,
Robust VO/VSLAM with Low Latency . submitted to IEEE Transactions on
Robotics 2019.
94
SSLAM-HR
code
2.14 %
0.0059 [deg/m]
0.5 s
8 cores @ 3.5 Ghz (C/C++)
F. Bellavia, M. Fanfani, F. Pazzaglia and C. Colombo: Robust Selective Stereo SLAM without Loop Closure and Bundle Adjustment . ICIAP 2013 2013. F. Bellavia, M. Fanfani and C. Colombo: Selective visual odometry for accurate AUV localization . Autonomous Robots 2015. M. Fanfani, F. Bellavia and C. Colombo: Accurate Keyframe Selection and Keypoint Tracking for Robust Visual Odometry . Machine Vision and Applications 2016.
95
FTMVO
2.24 %
0.0049 [deg/m]
0.11 s
1 core @ 2.5 Ghz (C/C++)
H. Mirabdollah and B. Mertsching: Fast Techniques for Monocular Visual
Odometry . Proceeding of 37th
German Conference on Pattern Recognition (GCPR)
2015 .
96
PbT-M1
2.38 %
0.0053 [deg/m]
1 s
1 core @ 2.5 Ghz (Python + C/C++)
N. Fanani, M. Ochs, H. Bradler and R. Mester: Keypoint trajectory estimation using propagation based tracking . Intelligent Vehicles Symposium (IV) 2016. N. Fanani, A. Stuerck, M. Barnada and R. Mester: Multimodal scale estimation for monocular visual odometry . Intelligent Vehicles Symposium (IV) 2017.
97
FLVIS
code
2.42 %
0.0057 [deg/m]
0.05 s
2 cores @ 2.5 Ghz (C/C++)
S. Chen, C. Wen, Y. Zou and W. Chen: Stereo visual inertial pose estimation based on feedforward-feedback loops . arXiv preprint arXiv:2007.02250 2020.
98
VISO2-S
code
2.44 %
0.0114 [deg/m]
0.05 s
1 core @ 2.5 Ghz (C/C++)
A. Geiger, J. Ziegler and C. Stiller: StereoScan: Dense 3d Reconstruction in
Real-time . IV 2011.
99
MLM-SFM
2.54 %
0.0057 [deg/m]
0.03 s
5 cores @ 2.5 Ghz (C/C++)
S. Song and M. Chandraker: Robust Scale Estimation in Real-Time
Monocular SFM for Autonomous Driving . CVPR 2014. S. Song, M. Chandraker and C. Guest: Parallel, Real-time Monocular Visual
Odometry . ICRA 2013.
100
GT_VO3pt
2.54 %
0.0078 [deg/m]
1.26 s
1 core @ 2.5 Ghz (C/C++)
C. Beall, B. Lawrence, V. Ila and F. Dellaert: 3D reconstruction of underwater structures . IROS 2010.
101
RMCPE+GP
2.55 %
0.0086 [deg/m]
0.39 s
1 core @ 2.5 Ghz (C/C++)
M. Mirabdollah and B. Mertsching: On the Second Order Statistics of
Essential Matrix Elements . Proceeding of 36th German Conference
on Pattern Recognition 2014.
102
KLTVO
2.63 %
0.0042 [deg/m]
0.1 s
1 core @ 3.0 Ghz (C/C++)
N. Dias and G. Laureano: Accurate Stereo Visual Odometry Based on
Keypoint Selection . 2019 Latin American Robotics Symposium
(LARS), 2019 Brazilian Symposium on Robotics
(SBR) and 2019 Workshop on Robotics in Education
(WRE) 2019.
103
VO3pt
2.69 %
0.0068 [deg/m]
0.56 s
1 core @ 2.0 Ghz (C/C++)
P. Alcantarilla: Vision Based Localization: From Humanoid Robots to Visually Impaired People . 2011. P. Alcantarilla, J. Yebes, J. Almazán and L. Bergasa: On Combining Visual SLAM and Dense Scene Flow to Increase the Robustness of Localization and Mapping in Dynamic Environments . ICRA 2012.
104
TGVO
2.94 %
0.0077 [deg/m]
0.06 s
1 core @ 2.5 Ghz (C/C++)
B. Kitt, A. Geiger and H. Lategahn: Visual Odometry based on Stereo Image Sequences
with RANSAC-based Outlier Rejection Scheme . IV 2010.
105
VO3ptLBA
3.13 %
0.0104 [deg/m]
0.57 s
1 core @ 2.0 Ghz (C/C++)
P. Alcantarilla: Vision Based Localization: From Humanoid Robots to Visually Impaired People . 2011. P. Alcantarilla, J. Yebes, J. Almazán and L. Bergasa: On Combining Visual SLAM and Dense Scene Flow to Increase the Robustness of Localization and Mapping in Dynamic Environments . ICRA 2012.
106
PLSVO
3.26 %
0.0095 [deg/m]
0.20 s
2 cores @ 2.5 Ghz (C/C++)
R. Gomez-Ojeda and J. Gonzalez- Jimenez: Robust Stereo Visual Odometry through a
Probabilistic Combination of Points and Line
Segments . Robotics and Automation (ICRA), 2016
IEEE International Conference on 2016.
107
BLF
3.49 %
0.0128 [deg/m]
0.7 s
1 core @ 2.5 Ghz (C/C++)
M. Velas, M. Spanel, M. Hradis and A. Herout: CNN for IMU Assisted Odometry
Estimation using Velodyne LiDAR . ArXiv e-prints 2017.
108
CFORB
3.73 %
0.0107 [deg/m]
0.9 s
8 cores @ 3.0 Ghz (C/C++)
D. Mankowitz and E. Rivlin: CFORB: Circular FREAK-ORB Visual Odometry . arXiv preprint arXiv:1506.05257 2015.
109
GeM-VO
code
3.80 %
0.0150 [deg/m]
0.21 s
GPU @ 2.5 Ghz (Python)
110
DeepCLR
code
3.83 %
0.0104 [deg/m]
0.05 s
GPU @ 1.0 Ghz (Python)
M. Horn, N. Engel, V. Belagiannis, M. Buchholz and K. Dietmayer: DeepCLR: Correspondence-Less Architecture for Deep End-to-End Point Cloud Registration . 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC) 2020.
111
VOFS
3.94 %
0.0099 [deg/m]
0.51 s
1 core @ 2.0 Ghz (C/C++)
M. Kaess, K. Ni and F. Dellaert: Flow separation for fast and robust stereo odometry . ICRA 2009. P. Alcantarilla, L. Bergasa and F. Dellaert: Visual Odometry priors for robust EKF-SLAM . ICRA 2010.
112
VOFSLBA
4.17 %
0.0112 [deg/m]
0.52 s
1 core @ 2.0 Ghz (C/C++)
M. Kaess, K. Ni and F. Dellaert: Flow separation for fast and robust stereo odometry . ICRA 2009. P. Alcantarilla, L. Bergasa and F. Dellaert: Visual Odometry priors for robust EKF-SLAM . ICRA 2010.
113
CUDA-EgoMotion
4.36 %
0.0052 [deg/m]
.001 s
GPU @ 2.5 Ghz (Matlab)
A. Aguilar-González, M. Arias- Estrada, F. Berry and J. Osuna-Coutiño: The Fastest Visual Ego-motion Algorithm
in the West . Microprocessors and Microsystems 2019.
114
DVLO
code
4.57 %
0.0069 [deg/m]
0.1s
1 core @ 2.5 Ghz (Python)
115
BCC
4.59 %
0.0175 [deg/m]
1 s
1 core @ 2.5 Ghz (C/C++)
M. Velas, M. Spanel, M. Hradis and A. Herout: CNN for IMU Assisted Odometry
Estimation using Velodyne LiDAR . ArXiv e-prints 2017.
116
D3DLO
5.40 %
0.0154 [deg/m]
0.1 s
GPU @ 2.5 Ghz (Python)
P. Adis, N. Horst and M. Wien: D3DLO: Deep 3D LiDAR Odometry . 2021.
117
EB3DTE+RJMCM
5.45 %
0.0274 [deg/m]
1 s
1 core @ 2.5 Ghz (Matlab)
Z. Boukhers, K. Shirahama and M. Grzegorzek: Example-based 3D Trajectory
Extraction of Objects from 2D Videos . Circuits and Systems for Videos
Technology (TCSVT), IEEE Transaction on 2017. Z. Boukhers, K. Shirahama and M. Grzegorzek: Less restrictive camera odometry estimation
from monocular camera . Multimedia Tools and Applications 2017.
118
LTMVO
7.40 %
0.0142 [deg/m]
0.1 s
1 core @ 2.5 Ghz (C/C++)
Y. Zou, P. Ji, Q. Tran, J. Huang and M. Chandraker: Learning Monocular Visual Odometry via
Self-Supervised Long-Term Modeling . ECCV 2020.
119
VISO2-M + GP
7.46 %
0.0245 [deg/m]
0.15 s
1 core @ 2.5 Ghz (C/C++)
A. Geiger, J. Ziegler and C. Stiller: StereoScan: Dense 3d Reconstruction in
Real-time . IV 2011. S. Song and M. Chandraker: Robust Scale Estimation in Real-Time
Monocular SFM for Autonomous Driving . CVPR 2014.
120
BLO
9.21 %
0.0163 [deg/m]
0.1 s
1 core @ 2.5 Ghz (C/C++)
M. Velas, M. Spanel, M. Hradis and A. Herout: CNN for IMU Assisted Odometry
Estimation using Velodyne LiDAR . ArXiv e-prints 2017.
121
3DG-DVO
11.38 %
0.0305 [deg/m]
0.04 s
GPU @ 1.5 Ghz (Python)
122
VISO2-M
code
11.94 %
0.0234 [deg/m]
0.1 s
1 core @ 2.5 Ghz (C/C++)
A. Geiger, J. Ziegler and C. Stiller: StereoScan: Dense 3d Reconstruction in
Real-time . IV 2011.
123
MonoDepth2
code
12.59 %
0.0312 [deg/m]
1 s
1 core @ 2.5 Ghz (C/C++)
C. Godard, O. Mac Aodha, M. Firman and G. Brostow: Digging into self-supervised monocular
depth estimation . ICCV 2019.
124
SMD-LVO
code
13.25 %
0.0097 [deg/m]
0.03 s
GPU @ 2.5 Ghz (Python)
I. Slinko, A. Vorontsova, F. Konokhov, O. Barinova and A. Konushin: Scene Motion Decomposition for
Learnable Visual Odometry . 2019.
125
SC-SfMLearner (cs+k)
code
13.69 %
0.0355 [deg/m]
0.01 s
1 core @ 2.5 Ghz (C/C++)
J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M. Cheng and I. Reid: Unsupervised scale-consistent depth and
ego-motion learning from monocular video . NeurIPS 2019.
126
GraphAVO
14.15 %
0.0228 [deg/m]
0.01 s
GPU @ 1.5 Ghz (Python)
127
CC
code
16.06 %
0.0320 [deg/m]
0.1 s
1 core @ 2.5 Ghz (C/C++)
A. Ranjan, V. Jampani, L. Balles, K. Kim, D. Sun, J. Wulff and M. Black: Competitive collaboration: Joint
unsupervised learning of depth, camera motion,
optical flow and motion segmentation . CVPR 2019.
128
OABA
20.95 %
0.0135 [deg/m]
0.5 s
1 core @ 3.5 Ghz (C/C++)
D. Frost, O. Kähler and D. Murray: Object-Aware Bundle Adjustment for
Correcting Monocular Scale Drift . Proceedings of the International
Conference on Robotics and Automation (ICRA) 2012.
129
SC-SfMLearner (k)
code
21.47 %
0.0425 [deg/m]
0.01 s
1 core @ 2.5 Ghz (C/C++)
J. Bian, Z. Li, N. Wang, H. Zhan, C. Shen, M. Cheng and I. Reid: Unsupervised scale-consistent depth and
ego-motion learning from monocular video . NeurIPS 2019.
130
SDG
code
44.07 %
0.1042 [deg/m]
20 s
>8 cores @ >3.5 Ghz (C/C++)
131
SLL
90.05 %
0.2645 [deg/m]
0.1 s
1 core @ 2.5 Ghz (C/C++)
Y. Zhou, H. Fan, S. Gao, Y. Yang, X. Zhang, J. Li and Y. Guo: Retrieval and Localization with
Observation Constraints . CoRR 2021.