Method
Setting
Code
MaxF
AP
PRE
REC
FPR
FNR
Runtime
Environment
1
DAPT
97.31 %
92.66 %
97.36 %
97.26 %
1.20 %
2.74 %
0.01 s
1 core @ 2.5 Ghz (C/C++)
2
DiPFormer
97.29 %
92.66 %
97.37 %
97.20 %
1.20 %
2.80 %
0.01 s
1 GPU @ 2.5 Ghz (C/C++)
S. Chen, T. Han, C. Zhang, W. Liu, J. Su, Z. Wang and G. Cai: Depth Matters: Exploring Deep Interactions
of RGB-D for Semantic Segmentation in Traffic
Scenes . arXiv preprint arXiv:2409.07995 2024.
3
UdeerLID+
97.26 %
93.54 %
97.38 %
97.15 %
1.19 %
2.85 %
0.01 s
1 core @ 2.5 Ghz (C/C++)
T. Ni, X. Zhan, T. Luo, W. Liu, Z. Shi and J. Chen: UdeerLID+: Integrating LiDAR, Image,
and Relative Depth with Semi-Supervised . 2024.
4
SNE-RoadSegV2
97.25 %
93.52 %
97.48 %
97.03 %
1.14 %
2.97 %
0.03 s
GPU @ 2.5 Ghz (Python)
Y. Feng, Y. Ma, Q. Chen, I. Pitas and R. Fan: SNE-RoadSegV2: Advancing Heterogeneous
Feature Fusion and Fallibility Awareness for
Freespace Detection . 2024.
5
RoadFormer+
97.17 %
93.41 %
97.09 %
97.24 %
1.33 %
2.76 %
0.04 s
1 core @ 2.5 Ghz (C/C++)
J. Huang, J. Li, N. Jia, Y. Sun, C. Liu, Q. Chen and R. Fan: RoadFormer+: Delivering RGB-X Scene
Parsing through Scale-Aware Information Decoupling
and Advanced Heterogeneous Feature Fusion . IEEE Transactions on Intelligent
Vehicles 2024.
6
PLARD
code
97.05 %
93.53 %
97.18 %
96.92 %
1.28 %
3.08 %
0.16 s
GPU @ 2.5 Ghz (Python)
Z. Chen, J. Zhang and D. Tao: Progressive LiDAR adaptation for road
detection . IEEE/CAA Journal of Automatica
Sinica 2019.
7
RoadFormer
97.02 %
93.34 %
96.84 %
97.20 %
1.45 %
2.80 %
0.07 s
GPU @ 2.5 Ghz (Python)
J. Li, Y. Zhang, P. Yun, G. Zhou, Q. Chen and R. Fan: RoadFormer: Duplex Transformer for
RGB-Normal Semantic Road Scene Parsing . IEEE Transactions on Intelligent
Vehicles 2024.
8
SNE-RoadSeg+
96.95 %
93.60 %
96.99 %
96.90 %
1.37 %
3.10 %
0.08 s
GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, P. Cai and M. Liu: SNE-RoadSeg+: Rethinking
depth-normal translation and deep supervision for
freespace detection . 2021 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS) 2021.
9
UdeerLID
96.94 %
93.62 %
97.09 %
96.79 %
1.32 %
3.21 %
0.01 s
1 core @ 2.5 Ghz (C/C++)
T. Ni, X. Zhan, T. Luo, W. Liu, Z. Shi and J. Chen: UdeerLID+: Integrating LiDAR, Image,
and Relative Depth with Semi-Supervised . 2024.
10
PLB-RD
96.87 %
93.71 %
97.35 %
96.40 %
1.20 %
3.60 %
0.46 s
GPU @ 2.5 Ghz (Python)
L. Sun, H. Zhang and W. Yin: Pseudo-LiDAR-Based Road Detection . IEEE Transactions on Circuits and Systems for Video Technology (T-CSVT) 2022.
11
Evi-RoadSeg
code
96.51 %
92.94 %
95.90 %
97.13 %
1.89 %
2.87 %
0.01 s
GPU @ 2.5 Ghz (Python)
F. Xue✝, Y. Chang✝, W. Xu, W. Liang, F. Sheng and A. Ming: Evidence-based Real-time Road
Segmentation with RGB-D Data Augmentation . Transactions on Intelligent
Transportation Systems (T-ITS) 2024.
12
USNet
code
96.46 %
92.78 %
96.32 %
96.60 %
1.68 %
3.40 %
0.02 s
GPU @ 1.5 Ghz (Python)
Y. Chang, F. Xue, F. Sheng, W. Liang and A. Ming: Fast Road Segmentation via
Uncertainty-aware Symmetric Network . IEEE International Conference on
Robotics and Automation (ICRA) 2022.
13
DFM-RTFNet
96.46 %
93.66 %
96.58 %
96.33 %
1.55 %
3.67 %
0.08 s
GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, Y. Sun and M. Liu: Dynamic fusion module evolves
drivable area and road anomaly detection: A
benchmark and algorithms . IEEE Transactions on Cybernetics 2021.
14
SNE-RoadSeg
code
96.42 %
93.67 %
96.59 %
96.26 %
1.55 %
3.74 %
0.18 s
GPU @ 2.5 Ghz (Python)
R. Fan, H. Wang, P. Cai and M. Liu: SNE-RoadSeg: Incorporating
Surface Normal Information into Semantic
Segmentation for Accurate Freespace Detection . ECCV 2020.
15
3MT-RoadSeg
code
96.13 %
93.42 %
96.20 %
96.06 %
1.73 %
3.94 %
0.07 s
GPU @ 2.5 Ghz (Python)
E. Milli, . Erkent and A. Yılmaz: Multi-Modal Multi-Task (3MT) Road
Segmentation . IEEE Robotics and Automation Letters 2023.
16
LRDNet+
code
96.10 %
92.00 %
96.89 %
95.32 %
1.39 %
4.68 %
0.01 s
GPU @ 2.5 Ghz (Python)
A. Khan, S. Jie, R. Yunbo, Lei and H. Shen: LRDNet: Lightweight LiDAR Aided
Cascaded Feature Pools for Free Road Space
Detection . IEEE Transactions on Multimedia 2023.
17
LRDNet(S)
code
96.01 %
92.47 %
96.60 %
95.43 %
1.53 %
4.57 %
.009 s
GPU @ 2.5 Ghz (Python)
A. Khan, S. Jie, R. Yunbo, Lei and H. Shen: LRDNet: Lightweight LiDAR Aided
Cascaded Feature Pools for Free Road Space
Detection . IEEE Transactions on Multimedia 2023.
18
LRDNet (L)
code
96.01 %
91.83 %
96.84 %
95.19 %
1.41 %
4.81 %
0.1 s
GPU @ 2.5 Ghz (Python)
A. Khan, S. Jie, R. Yunbo, Lei and H. Shen: LRDNet: Lightweight LiDAR Aided
Cascaded Feature Pools for Free Road Space
Detection . IEEE Transactions on Multimedia 2023.
19
RBANet
95.78 %
89.14 %
94.92 %
96.66 %
2.36 %
3.34 %
0.16 s
GPU @ 1.5 Ghz (Python + C/C++)
J. Sun, S. Kim, S. Lee, Y. Kim and S. Ko: Reverse and Boundary Attention Network for
Road Segmentation . Proceedings of the IEEE International
Conference on Computer Vision Workshops 2019.
20
NIM-RTFNet
95.71 %
93.56 %
95.84 %
95.59 %
1.89 %
4.41 %
0.05 s
GPU @ 2.5 Ghz (Python)
H. Wang, R. Fan, Y. Sun and M. Liu: Applying Surface Normal
Information in Drivable Area and Road Anomaly
Detection for Ground Mobile Robots . 2020 IEEE/RSJ International
Conference on Intelligent Robots and Systems
(IROS) 2020.
21
CLCFNet
95.65 %
89.49 %
95.31 %
96.00 %
2.15 %
4.00 %
0.02 s
GPU @ 1.5 Ghz (Python)
S. Gu, J. Yang and H. Kong: A Cascaded LiDAR-Camera Fusion
Network for Road Detection . ICRA 2021.
22
LidCamNet
95.62 %
93.54 %
95.77 %
95.48 %
1.92 %
4.52 %
0.15 s
GPU @ 2.5 Ghz (Python)
L. Caltagirone, M. Bellone, L. Svensson and M. Wahde: LIDAR-Camera Fusion for Road Detection Using Fully Convolutional Neural Networks . Robotics and Autonomous Systems 2018.
23
V2FedR
code
95.21 %
88.30 %
94.00 %
96.46 %
2.81 %
3.54 %
0.05 s
GPU @ >3.5 Ghz (Python)
24
CLCFNet (LiDAR)
95.16 %
89.18 %
94.97 %
95.36 %
2.30 %
4.64 %
0.02 s
GPU @ 1.5 Ghz (C/C++)
S. Gu, J. Yang and H. Kong: A Cascaded LiDAR-Camera Fusion
Network for Road Detection . ICRA 2021.
25
TEDR
code
95.14 %
87.89 %
93.55 %
96.80 %
3.04 %
3.20 %
0.2 s
1 core @ 2.5 Ghz (C/C++)
26
TVFNet
94.96 %
89.17 %
94.95 %
94.97 %
2.30 %
5.03 %
0.04 s
GPU @ 1.5 Ghz (Python)
S. Gu, Y. Zhang, J. Yang, J. Alvarez and H. Kong: Two-View Fusion based
Convolutional Neural Network for Urban Road
Detection . IROS 2019.
27
LC-CRF
94.91 %
86.41 %
91.92 %
98.11 %
3.93 %
1.89 %
0.18 s
GPU @ 1.5 Ghz (Python + C/C++)
S. Gu, Y. Zhang, J. Tang, J. Yang and H. Kong: Road Detection through CRF based
LiDAR-Camera Fusion . ICRA 2019.
28
RBNet
94.77 %
91.42 %
95.16 %
94.37 %
2.19 %
5.63 %
0.18 s
GPU @ 2.5 Ghz (Matlab + C/C++)
Z. Chen and Z. Chen: RBNet: A Deep Neural Network for Unified Road and
Road Boundary Detection . International Conference on Neural Information
Processing 2017.
29
SSLGAN
94.62 %
89.50 %
95.32 %
93.93 %
2.10 %
6.07 %
700ms
GPU @ 1.5 Ghz (Python)
X. Han, J. Lu, C. Zhao, S. You and H. Li: Semisupervised and Weakly Supervised
Road Detection Based on Generative Adversarial
Networks . IEEE Signal Processing Letters 2018.
30
LFD-RoadSeg
code
94.58 %
93.42 %
95.20 %
93.98 %
2.16 %
6.02 %
.004 s
GPU @ 1.5 Ghz (Python)
H. Zhou, F. Xue, Y. Li, S. Gong, Y. Li and Y. Zhou: Exploiting Low-Level Representations for Ultra-Fast Road
Segmentation . IEEE Transactions on Intelligent Transportation Systems 2024.
31
RGB36-Cotrain
94.55 %
93.12 %
94.81 %
94.29 %
2.35 %
5.71 %
0.1 s
1 core @ 2.5 Ghz (C/C++)
L. Caltagirone, S. Lennart, M. Wahde and M. Sanfridson: Lidar-Camera Co-Training for Semi-
Supervised Road Detection . arXiv preprint arXiv:1911.12597 2019.
32
HA-DeepLabv3+
94.38 %
92.72 %
94.70 %
94.06 %
2.40 %
5.94 %
0.06 s
1 core @ 2.5 Ghz (Python)
R. Fan, H. Wang, P. Cai, J. Wu, M. Bocus, L. Qiao and M. Liu: Learning collision-free space detection
from stereo images: Homography matrix brings
better data augmentation . IEEE/ASME Transactions on
Mechatronics 2021.
33
TEDNet
code
94.24 %
92.43 %
93.45 %
95.04 %
3.04 %
4.96 %
0.09 s
GPU @ 2.5 Ghz (Python)
M. Bayón-Gutiérrez, M. García- Ordás, H. Alaiz Moretón, J. Aveleira-Mata, S. Rubio-Martín and J. Benítez-Andrades: TEDNet: Twin Encoder Decoder Neural
Network for 2D Camera and LiDAR Road Detection . Logic Journal of the IGPL 2024.
34
BJN
94.17 %
89.16 %
94.95 %
93.41 %
2.26 %
6.59 %
0.02 s
1 core @ 2.5 Ghz (C/C++)
B. Yu, D. Lee, J. Lee and S. Kee: Free Space Detection Using Camera-LiDAR
Fusion in a Bird’s Eye View Plane . Sensors 2021.
35
DEEP-DIG
94.16 %
93.41 %
95.02 %
93.32 %
2.23 %
6.68 %
0.14 s
GPU @ 3.5 Ghz (Python + C/C++)
J. Muñoz-Bulnes, C. Fernandez, I. Parra, D. Fernández-Llorca and M. Sotelo: Deep Fully Convolutional
Networks with Random Data Augmentation
for Enhanced Generalization in Road
Detection . Workshop on Deep
Learning for Autonomous Driving on IEEE
20th International Conference on
Intelligent Transportation Systems 2017.
36
CLRD
94.06 %
92.13 %
94.32 %
93.80 %
2.57 %
6.21 %
0.05 s
GPU @ 2.5 Ghz (Python)
M. Bayón-Gutiérrez, J. Benítez- Andrades, S. Rubio-Martín, J. Aveleira-Mata, H. Alaiz-Moretón and M. García-Ordás: Roadway Detection Using Convolutional
Neural Network Through Camera and LiDAR Data . Hybrid Artificial Intelligent Systems 2022.
37
Hadamard-FCN
94.06 %
90.89 %
94.62 %
93.50 %
2.42 %
6.50 %
0.02 s
GPU @ 1.5 Ghz (Python)
M. Oeljeklaus: An Integrated Approach for Traffic Scene Understanding from Monocular Cameras . 2021.
38
StixelNet II
94.05 %
85.85 %
91.30 %
96.98 %
4.21 %
3.02 %
1.2 s
1 core @ 3.0 Ghz (Matlab + C/C++)
N. Garnett, S. Silberstein, S. Oron, E. Fetaya, U. Verner, A. Ayash, V. Goldner, R. Cohen, K. Horn and D. Levi: Real-time category-based and general
obstacle detection for autonomous driving . 5th Workshop on Computer Vision for
Road Scene Understanding and Autonomous Driving
(CVRSUAD'17, IEEE-ICCV 2017
Workshop) 2017.
39
MultiNet
code
93.99 %
93.24 %
94.51 %
93.48 %
2.47 %
6.52 %
0.17 s
GPU @ 2.5 Ghz (Python + C/C++)
M. Teichmann, M. Weber, J. Zoellner, R. Cipolla and R. Urtasun: MultiNet: Real-time Joint Semantic Reasoning for Autonomous Driving . CoRR 2016.
40
ChipNet
93.73 %
87.62 %
93.25 %
94.21 %
3.11 %
5.79 %
12 ms
GPU @ 1.5 Ghz (Keras)
Y. Lyu, L. Bai and X. Huang: ChipNet: Real-Time LiDAR Processing for
Drivable Region Segmentation on an FPGA . IEEE Transactions on Circuits and
Systems I: Regular Papers 2019.
41
DDN
93.65 %
88.55 %
94.28 %
93.03 %
2.57 %
6.97 %
2 s
GPU @ 2.5 Ghz (Python + C/C++)
R. Mohan: Deep Deconvolutional Networks for Scene Parsing . 2014.
42
RoadNet3
93.54 %
92.64 %
93.65 %
93.44 %
2.89 %
6.56 %
300 ms
GPU @ GTX950M (Python +Tensorflow)
Y. Lyu, L. Bai and X. Huang: Road Segmentation using CNN and
Distributed LSTM . 2019 IEEE International Symposium on
Circuits and Systems (ISCAS) 2019.
43
HID-LS
93.10 %
86.38 %
91.89 %
94.33 %
3.79 %
5.67 %
0.25 s
1 cores @ 3.0 Ghz (C/C++)
S. Gu, Y. Zhang, J. Yang and H. Kong: Lidar-based urban road detection by
histograms of normalized inverse
depths and line scanning . ECMR 2017. S. Gu, Y. Zhang, X. Yuan, J. Yang, T. Wu and H. Kong: Histograms of the Normalized
Inverse Depth and Line Scanning for Urban
Road Detection . IEEE Trans. Intelligent
Transportation Systems 2019.
44
RGB36-Super
93.04 %
91.85 %
93.62 %
92.46 %
2.87 %
7.54 %
0.1 s
1 core @ 2.5 Ghz (C/C++)
L. Caltagirone, S. Lennart, M. Wahde and M. Sanfridson: Lidar-Camera Co-Training for Semi-
Supervised Road Detection . arXiv preprint arXiv:1911.12597 2019.
45
LoDNN
92.75 %
89.98 %
90.09 %
95.58 %
4.79 %
4.42 %
18 ms
GPU @ 2.5 Ghz (Torch)
L. Caltagirone, S. Scheidegger, L. Svensson and M. Wahde: Fast LIDAR-based Road Detection
Using Fully Convolutional Neural Networks . IEEE Intelligent Vehicles
Symposium 2017.
46
Up-Conv-Poly
code
92.20 %
88.85 %
92.57 %
91.83 %
3.36 %
8.17 %
0.08 s
GPU @ 2.5 Ghz (Python + C/C++)
G. Oliveira, W. Burgard and T. Brox: Efficient Deep Methods for Monocular
Road Segmentation . IROS 2016.
47
OFA Net
code
92.08 %
82.73 %
87.87 %
96.72 %
6.08 %
3.28 %
0.04 s
GPU @ 1.5 Ghz (Python)
S. Zhang, Z. Zhang, L. Sun and W. Qin: One For All: A Mutual Enhancement Method
for Object Detection and Semantic Segmentation . Applied Sciences 2019.
48
RoadNet-RT
91.99 %
92.54 %
92.75 %
91.24 %
3.25 %
8.76 %
8m s
GPU @ 2.5 Ghz (Python)
L. Bai, Y. Lyu and X. Huang: RoadNet-RT: High Throughput CNN
Architecture and SoC Design for Real-Time Road
Segmentation . arXiv preprint arXiv:2006.07644 2020.
49
MixedCRF
91.57 %
84.68 %
90.02 %
93.19 %
4.71 %
6.81 %
6s
1 core @ 2.5 Ghz (Matlab + C/C++)
X. Han, H. Wang, J. Lu and C. Zhao: Road detection based on the fusion of
Lidar and image data . 2017.
50
FTP
91.20 %
90.60 %
91.11 %
91.29 %
4.06 %
8.71 %
0.28 s
GPU @ 2.5 Ghz (C/C++)
A. Laddha, M. Kocamaz, L. Navarro-Serment and M. Hebert: Map-Supervised Road Detection . IEEE Intelligent Vehicles Symposium Proceedings 2016.
51
ALO-AVG-MM
code
91.15 %
83.82 %
89.07 %
93.33 %
5.22 %
6.67 %
0.0296 sec
GeForce GTX 1080 GPU (Python)
F. Reis, R. Almeida, E. Kijak, S. Malinowski, S. Guimaraes and Z. Jr.: Combining convolutional side-outputs for
road image segmentation . 2019 International Joint Conference
on Neural Networks (IJCNN) - \textbfAccepted 2019.
52
HybridCRF
90.99 %
85.26 %
90.65 %
91.33 %
4.29 %
8.67 %
1.5 s
1 core @ 2.5 Ghz (C/C++)
L. Xiao, R. Wang, B. Dai, Y. Fang, D. Liu and T. Wu: Hybrid conditional random field based
camera-LIDAR fusion for road detection . Information Sciences 2018.
53
NNP
90.50 %
87.95 %
91.43 %
89.59 %
3.83 %
10.41 %
5 s
4 cores @ 2.5 Ghz (Matlab)
X. Chen, K. Kundu, Y. Zhu, A. Berneshawi, H. Ma, S. Fidler and R. Urtasun: 3D Object Proposals for Accurate Object
Class Detection . NIPS 2015.
54
Up-Conv
90.48 %
88.20 %
91.30 %
89.67 %
3.90 %
10.33 %
0.05 s
GPU @ 2.5 Ghz (C/C++)
G. Oliveira, W. Burgard and T. Brox: Efficient Deep Methods for Monocular
Road Segmentation . IROS 2016.
55
HIM
90.07 %
79.98 %
90.79 %
89.35 %
4.13 %
10.65 %
7 s
>8 cores @ 2.5 Ghz (Python + C/C++)
D. Munoz, J. Bagnell and M. Hebert: Stacked Hierarchical Labeling . European Conference on Computer Vision (ECCV) 2010.
56
LidarHisto
code
89.87 %
83.03 %
91.28 %
88.49 %
3.85 %
11.51 %
0.1 s
1 core @ 2.5 Ghz (C/C++)
L. Chen, J. Yang and H. Kong: Lidar-histogram for fast road and obstacle
detection . 2017 IEEE International Conference on
Robotics and Automation (ICRA) 2017.
57
FusedCRF
89.55 %
80.00 %
84.87 %
94.78 %
7.70 %
5.22 %
2 s
1 core @ 2.5 Ghz (C/C++)
L. Xiao, B. Dai, D. Liu, T. Hu and T. Wu: CRF based Road Detection with Multi-Sensor Fusion . Intelligent Vehicles Symposium (IV) 2015.
58
BMCF
89.42 %
83.13 %
88.31 %
90.55 %
5.46 %
9.45 %
2.5 s
1 core @ 2.5 Ghz (C/C++)
L. Wang, T. Wu, Z. Xiao, L. Xiao, D. Zhao and J. Han: Multi-cue road boundary detection using stereo
vision . 2016 IEEE International Conference on Vehicular
Electronics and Safety (ICVES) 2016.
59
FCN-LC
89.36 %
78.80 %
89.35 %
89.37 %
4.85 %
10.63 %
0.03 s
GPU Titan X
C. Mendes, V. Frémont and D. Wolf: Exploiting Fully Convolutional Neural
Networks for Fast Road Detection . IEEE Conference on Robotics and
Automation (ICRA) 2016.
60
CB
88.89 %
82.17 %
87.26 %
90.58 %
6.03 %
9.42 %
2 s
1 core @ 3.4 Ghz (Python) + GPU
C. Mendes, V. Frémont and D. Wolf: Vision-Based Road Detection using
Contextual Blocks . 2015.
61
SPRAY
88.14 %
91.24 %
88.60 %
87.68 %
5.14 %
12.32 %
45 ms
NVIDIA GTX 580 (Python + OpenCL)
T. Kuehnl, F. Kummert and J. Fritsch: Spatial Ray Features for Real-Time Ego-Lane Extraction . Proc. IEEE Intelligent Transportation Systems 2012.
62
ProbBoost
87.48 %
80.13 %
85.02 %
90.09 %
7.23 %
9.91 %
2.5 min
>8 cores @ 3.0 Ghz (C/C++)
G. Vitor, A. Victorino and J. Ferreira: A probabilistic distribution approach for the classification of urban roads in complex environments . Workshop on Modelling, Estimation, Perception and Control of All Terrain Mobile Robots on IEEE International Conference on Robotics and Automation (ICRA) 2014.
63
MAP
87.33 %
89.62 %
85.77 %
88.95 %
6.73 %
11.05 %
0.28s
GPU
A. Laddha, M. Kocamaz, L. Navarro-Serment and M. Hebert: Map-Supervised Road Detection . IEEE Intelligent Vehicles Symposium Proceedings 2016.
64
CN24
86.32 %
89.19 %
87.80 %
84.89 %
5.37 %
15.11 %
30 s
>8 cores @ 2.5 Ghz (C/C++)
C. Brust, S. Sickert, M. Simon, E. Rodner and J. Denzler: Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding . VISAPP 2015 - Proceedings of the 10th International Conference on
Computer Vision Theory and Applications, Berlin, Germany,
11-14 March, 2015 2015.
65
multi-task CNN
85.95 %
81.28 %
77.40 %
96.64 %
12.86 %
3.36 %
25.1 ms
GPU @ 2.0 Ghz (Python)
M. Oeljeklaus, F. Hoffmann and T. Bertram: A Fast Multi-Task CNN for Spatial Understanding of Traffic Scenes . IEEE Intelligent Transportation Systems Conference 2018.
66
GRES3D+VELO
85.43 %
83.04 %
82.69 %
88.37 %
8.43 %
11.63 %
60 ms
4 cores @ 2.8 Ghz (C/C++)
P. Shinzato: Estimation of obstacles and road area with sparse 3D points . 2015.
67
StixelNet
85.33 %
72.14 %
81.21 %
89.89 %
9.48 %
10.11 %
1 s
GPU @ 2.5 Ghz (C/C++)
D. Levi, N. Garnett and E. Fetaya: StixelNet: A Deep Convolutional Network for
Obstacle Detection and Road Segmentation. . 26TH British Machine Vision Conference
(BMVC) 2015.
68
SPlane + BL
85.23 %
88.66 %
83.43 %
87.12 %
7.89 %
12.88 %
2 s
1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption . IV 2014.
69
geo+gpr+crf
85.13 %
72.24 %
81.33 %
89.29 %
9.34 %
10.71 %
30 s
1 core @ 2.0 Ghz (C/C++)
Z. Xiao, B. Dai, H. Li, T. Wu, X. Xu, Y. Zeng and T. Chen: Gaussian process regression-based robust
free space detection for autonomous vehicle by 3-D
point cloud and 2-D appearance information fusion . International Journal of Advanced
Robotic Systems 2017.
70
RES3D-Velo
83.81 %
73.95 %
78.56 %
89.80 %
11.16 %
10.20 %
0.36 s
1 core @ 2.5 Ghz (C/C++)
P. Shinzato, D. Wolf and C. Stiller: Road Terrain Detection: Avoiding Common Obstacle Detection Assumptions Using Sensor Fusion . Intelligent Vehicles Symposium (IV) 2014.
71
SCRFFPFHGSP
83.73 %
72.89 %
82.13 %
85.39 %
8.47 %
14.61 %
5 s
8 cores @ 2.5 Ghz (C/C++, Matlab)
I. Gheorghe: Semantic Segmentation of
Terrain and
Road Terrain for Advanced Driver
Assistance Systems . 2015.
72
GRES3D+SELAS
83.69 %
84.61 %
78.31 %
89.88 %
11.35 %
10.12 %
110 ms
4 core @ 2.8 Ghz (C/C++)
P. Shinzato: Estimation of obstacles and road area with sparse 3D points . 2015.
73
HistonBoost
83.68 %
72.79 %
82.01 %
85.42 %
8.54 %
14.58 %
2.5 min
>8 cores @ 3.0 Ghz (C/C++)
G. Vitor, A. Victorino and J. Ferreira: Comprehensive Performance Analysis of Road Detection Algorithms Using the Common Urban Kitti-Road Benchmark . Workshop on Benchmarking Road Terrain and Lane Detection Algorithms for In-Vehicle Application on IEEE Intelligent Vehicles Symposium (IV) 2014.
74
PGM-ARS
80.97 %
69.11 %
77.51 %
84.76 %
11.21 %
15.24 %
0.05 s
i74700MQ @ 2.1Ghz (C/C++)
M. Passani, J. Yebes and L. Bergasa: Fast Pixelwise Road Inference Based on
Uniformly Reweighted Belief Propagation
. Proc. IEEE Intelligent
Vehicles Symposium 2015.
75
RES3D-Stereo
78.98 %
80.06 %
75.94 %
82.27 %
11.88 %
17.73 %
0.7 s
1 core @ 2.5 Ghz (C/C++)
P. Shinzato, D. Gomes and D. Wolf: Road estimation with sparse 3D points from stereo data . Intelligent Transportation Systems (ITSC), 2014 IEEE 17th International Conference on 2014.
76
BM
78.90 %
66.06 %
69.53 %
91.19 %
18.21 %
8.81 %
2 s
2 cores @ 2.5 Ghz (Matlab)
B. WANG, V. Fremont and S. Rodriguez Florez: Color-based Road Detection and its
Evaluation on the KITTI Road Benchmark . Workshop on Benchmarking Road Terrain
and Lane Detection Algorithms for In-Vehicle
Application, IEEE Intelligent Vehicles Symposium 2014.
77
SPlane
78.19 %
76.41 %
72.03 %
85.50 %
15.13 %
14.50 %
2 s
1 core @ 3.0 Ghz (C/C++)
N. Einecke and J. Eggert: Block-Matching Stereo with Relaxed Fronto-Parallel Assumption . IV 2014.
78
SRF
76.43 %
83.24 %
75.53 %
77.35 %
11.42 %
22.65 %
0.2 s
1 core @ 2.5 Ghz (C/C++)
L. Xiao, B. Dai, D. Liu, D. Zhao and T. Wu: Monocular Road Detection Using Structured
Random Forest . Int J Adv Robot Syst 2016.
79
CN24
76.28 %
79.29 %
72.44 %
80.55 %
13.96 %
19.45 %
20 s
>8 cores @ 2.5 Ghz (C/C++)
C. Brust, S. Sickert, M. Simon, E. Rodner and J. Denzler: Convolutional Patch Networks with Spatial Prior for Road Detection and Urban Scene Understanding . VISAPP 2015 - Proceedings of the 10th International Conference on
Computer Vision Theory and Applications, Berlin, Germany,
11-14 March, 2015 2015.
80
CN
73.69 %
76.68 %
69.18 %
78.83 %
16.00 %
21.17 %
2 s
1 core @ 2.5 Ghz (C/C++)
J. Alvarez, T. Gevers, Y. LeCun and A. Lopez: Road Scene Segmentation from a Single Image . ECCV 2012 2012.
81
ARSL-AMI
71.97 %
61.04 %
78.03 %
66.79 %
8.57 %
33.21 %
0.05 s
4 cores @ 2.5 Ghz (C/C++)
M. Passani, J. Yebes and L. Bergasa: CRF-based semantic labeling in
miniaturized road scenes
. Proc. IEEE Intelligent
Transportation Systems 2014.
82
ANN
62.83 %
46.77 %
50.21 %
83.91 %
37.91 %
16.09 %
3 s
1 core @ 3.0 Ghz (C/C++)
G. Vitor, D. Lima, A. Victorino and J. Ferreira: A 2D/3D Vision Based Approach Applied to Road Detection in Urban Environments . Intelligent Vehicles Symposium (IV), 2013 IEEE 2013.