Method 
     Setting 
     Code 
     Out-Noc Out-All 
     Avg-Noc 
     Avg-All 
     Density 
     Runtime 
     Environment 
      
   
    1 
     MonSter++ code  0.79 %  1.07 % 
       0.3 px 
       0.4 px 
     100.00 % 
     0.45 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    J. Cheng, W. Liao, Z. Cai, L. Liu, G. Xu, X. Wang, Y. Wang, Z. Yuan, Y. Deng, J. Zang, Y. Shi, J. Tang and X. Yang:  MonSter++: Unified Stereo Matching, 
Multi-view Stereo, and Real-time Stereo with 
Monodepth Priors . 2025. 
    
   
    2 
     MT  0.80 % 
      1.11 % 
       0.3 px   0.4 px 
     100.00 % 
     0.45 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    3 
     DispViT+  0.82 % 
      1.02 %   0.3 px 
       0.4 px 
     100.00 % 
     0.15 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    4 
     Wavelet-MonSter  0.83 % 
      1.07 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.58 s 
     NVIDIA  A6000 (PyTorch) 
      
   
     
   
    5 
     BridgeDepth code  0.83 % 
      1.03 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.13 s 
     Pytorch@NVIDIA RTX 3090 
      
   
    T. Guan, J. Guo, C. Wang and Y. Liu:  BridgeDepth: Bridging Monocular and Stereo Reasoning 
with 
Latent Alignment . ICCV 2025 Highlight. 
    
   
    6 
     MambaGaze-Stereo code  0.84 % 
      1.09 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.61 s 
     GPU @ 1.5 Ghz (Python) 
      
   
     
   
    7 
     MonSter code  0.84 % 
      1.09 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.45 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    J. Cheng, L. Liu, G. Xu, Z. Cai and X. Yang:  MonSter: Marry Monodepth to Stereo 
Unleashes Power . CVPR 2025 Highlight. 
    
   
    8 
     MGS-Selective  0.85 % 
      1.13 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    9 
     LACA code  0.86 % 
      1.04 % 
       0.3 px 
       0.4 px 
     100.00 % 
     0.24 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    10 
     Unrectified  stereo  0.88 % 
      1.17 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.9 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    11 
     IGEV++ (DepthAny.) code  0.89 % 
      1.13 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.48 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
    G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang:  IGEV++: Iterative Multi-range Geometry
Encoding Volumes for Stereo Matching . IEEE TPAMI 2025. 
    
   
    12 
     SGD-Stereo  0.91 % 
      1.13 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.45 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    13 
     depth dila volume  0.92 % 
      1.27 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    14 
     HCCV-Stereo  0.93 % 
      1.17 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.60 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    15 
     ViTAStereo code  0.93 % 
      1.16 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.22 s 
     NVIDIA RTX 4090 (PyTorch) 
      
   
    C. Liu, Q. Chen and R. Fan:  Playing to Vision Foundation Model's 
Strengths in Stereo Matching . IEEE Transactions on Intelligent
Vehicles 2024. 
    
   
    16 
     DEFOM-Stereo code  0.94 % 
      1.18 % 
       0.3 px 
       0.4 px 
     100.00 % 
     0.30 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    H. Jiang, Z. Lou, L. Ding, R. Xu, M. Tan, W. Jiang and R. Huang:  DEFOM-Stereo: Depth Foundation Model Based 
Stereo Matching . IEEE International Conference on 
Computer Vision and Pattern Recognition (CVPR) 2025. 
    
   
    17 
     mlt  0.94 % 
      1.28 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    18 
     S-IGEV-ICAE  0.95 % 
      1.21 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.251 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    19 
     frequence-stereo  0.96 % 
      1.31 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    20 
     Depthstereo  0.98 % 
      1.21 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    21 
     GANet+ADL code  0.98 % 
      1.29 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.67 s 
     NVIDIA RTX 3090 (PyTorch)	 
      
   
    P. Xu, Z. Xiang, C. Qiao, J. Fu and T. Pu:  Adaptive Multi-Modal Cross-Entropy Loss for 
Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024. 
    
   
    22 
     DS-Stereo  0.98 % 
      1.34 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.35 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    J. Lin, J. Du and H. Wang:  DS-Stereo: Deep-Shallow Information 
Interaction for Stereo Matching . IEEE Robotics and Automation Letters 2025. 
    
   
    23 
     MoCha-V2 code  0.98 % 
      1.24 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.28 s 
     NVIDIA Tesla A30 (PyTorch) 
      
   
    Z. Chen, Y. Zhang, W. Li, B. Wang, Y. Zhao and C. Chen:  Motif Channel Opened in a White-Box: 
Stereo Matching via Motif Correlation Graph . arXiv preprint arXiv:2411.12426 2024. MoCha-Stereo: Motif Channel Attention 
Network for Stereo Matching . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition 2024. 
    
   
    24 
     dpt_FFLO-Net  0.99 % 
      1.24 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.21 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    25 
     RiskMin code  1.00 % 
      1.44 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.20 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    C. Liu, S. Kumar, S. Gu, R. Timofte, Y. Yao and L. Gool:  Stereo Risk: A Continuous Modeling Approach to Stereo 
Matching . Forty-first International Conference on Machine Learning 
(ICML 2024) 2024. 
    
   
    26 
     StereoBase code  1.00 % 
      1.26 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.29 s 
     GPU @ 1.5 Ghz (Python) 
      
   
    X. Guo, J. Lu, C. Zhang, Y. Wang, Y. Duan, T. Yang, Z. Zhu and L. Chen:  OpenStereo: A Comprehensive Benchmark for 
Stereo Matching and Strong Baseline . arXiv preprint arXiv:2312.00343 2023. 
    
   
    27 
     GREAT-Selective  1.00 % 
      1.31 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.43 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
     
   
    28 
     VIP-Stereo  1.01 % 
      1.31 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.40 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    29 
     NMRF-Stereo code  1.01 % 
      1.35 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.09 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
    T. Guan, C. Wang and Y. Liu:  Neural Markov Random Field for Stereo Matching . Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition 2024. 
    
   
    30 
     GREAT-IGEV code  1.02 % 
      1.37 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.33 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
    J. Li, X. Chen, Z. Jiang, Q. Zhou, Y. Li and J. Wang:  Global Regulation and Excitation via 
Attention Tuning for Stereo Matching . arXiv preprint arXiv:2509.15891 2025. 
    
   
    31 
     NLCSM  1.02 % 
      1.32 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.9 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    32 
     ACVNet-ICAE  1.02 % 
      1.32 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.218 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    33 
     DN+ACVNet  1.02 % 
      1.41 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.24 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    J. Zhang, L. Huang, X. Bai, J. Zheng, L. Gu and E. Hancock:  Exploring the Usage of Pre-trained 
Features for Stereo Matching . International Journal of Computer 
Vision 2024. 
    
   
    34 
     AdaDepth  1.02 % 
      1.31 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.9 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    35 
     IGEV++ code  1.04 % 
      1.36 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.28 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
    G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang:  IGEV++: Iterative Multi-range Geometry 
Encoding Volumes for Stereo Matching . IEEE TPAMI 2025. 
    
   
    36 
     FFLO-Net  1.04 % 
      1.31 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.37 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
     
   
    37 
     Reg-Stereo  1.04 % 
      1.35 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.37 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    38 
     MC-Stereo code  1.04 % 
      1.34 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.40 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    M. Feng, J. Cheng, H. Jia, L. Liu, G. Xu and X. Yang:  MC-Stereo: Multi-peak Lookup and Cascade 
Search Range for Stereo Matching . International Conference on 3D Vision 
(3DV) 2024. 
    
   
    39 
     PCWNet code  1.04 % 
      1.37 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.44 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Z. Shen, Y. Dai, X. Song, Z. Rao, D. Zhou and L. Zhang:  PCW-Net: Pyramid Combination and Warping 
Cost Volume for Stereo Matching . European Conference on Computer 
Vision(ECCV) 2022. 
    
   
    40 
     WCG-NET  1.04 % 
      1.38 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    41 
     LaC+GANet code  1.05 % 
      1.42 % 
       0.4 px 
       0.5 px 
     100.00 % 
     1.8 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    B. Liu, H. Yu and Y. Long:  Local Similarity Pattern and Cost Self-
Reassembling for Deep Stereo Matching Networks . Proceedings of the AAAI Conference on 
Artificial Intelligence 2022. 
    
   
    42 
     StereoSA code  1.05 % 
      1.40 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.064 s 
     RTX 4070S (Python) 
      
   
     
   
    43 
     AIO-Stereo  1.05 % 
      1.29 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.20 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    J. Zhou, H. Zhang, J. Yuan, P. Ye, T. Chen, H. Jiang, M. Chen and Y. Zhang:  All-in-One: Transferring Vision 
Foundation Models into Stereo Matching . arXiv preprint arXiv:2412.09912 2024. 
    
   
    44 
     UGIA-Selective  1.05 % 
      1.36 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.15 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    W. Xiao and W. Zhao:  SR-Stereo \& DAPE: Stepwise Regression 
and Pre-Trained Edges for Practical Stereo 
Matching . IEEE Transactions on Intelligent 
Transportation Systems 2025. Rectified Iterative Disparity for Stereo 
Matching . arXiv preprint arXiv:2406.10943 2024. 
    
   
    45 
     ICVP code  1.06 % 
      1.39 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.17 s 
     GPU @ 1.5 Ghz (Python) 
      
   
    O. Kwon and E. Zell:  Image-Coupled Volume Propagation for 
Stereo Matching . 2023 IEEE International Conference on 
Image Processing (ICIP) 2023. 
    
   
    46 
     VMStereo-Base  1.06 % 
      1.35 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    47 
     NMRF-light  1.06 % 
      1.38 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    48 
     4D-IteraStereo  1.06 % 
      1.36 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.3 s 
     GPU @ 1.5 Ghz (Python) 
      
   
    G. Han, S. Shan, Y. Xu, K. Zhang and H. Wei:  4D-IteraStereo: Stereo Matching via 
4D Cost Volume Aggregation and Iterative 
Optimization . Measurement Science and 
Technology 2025. 
    
   
    49 
     try  1.06 % 
      1.36 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.31 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    50 
     MoCha-Stereo code  1.06 % 
      1.36 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.33 s 
     NVIDIA Tesla A6000 (PyTorch) 
      
   
    Z. Chen, W. Long, H. Yao, Y. Zhang, B. Wang, Y. Qin and J. Wu:  MoCha-Stereo: Motif Channel Attention 
Network for Stereo Matching . Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition (CVPR) 2024. 
    
   
    51 
     DMIO  1.07 % 
      1.38 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.3 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    Y. Shi:  Rethinking Iterative Stereo Matching from 
Diffusion Bridge Model Perspective . arXiv preprint arXiv:2404.09051 2024. 
    
   
    52 
     IAFR-Stereo  1.07 % 
      1.35 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.20 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    53 
     Selective-IGEV code  1.07 % 
      1.38 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.24 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    X. Wang, G. Xu, H. Jia and X. Yang:  Selective-Stereo: Adaptive Frequency 
Information Selection for Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024. 
    
   
    54 
     dilated volume  1.07 % 
      1.41 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    55 
     RT-MonSter++  1.07 % 
      1.41 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    56 
     SR Stereo  1.09 % 
      1.36 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    W. Xiao and W. Zhao:  SR-Stereo \& DAPE: Stepwise Regression and 
Pre-Trained Edges for Practical Stereo Matching . IEEE Transactions on Intelligent 
Transportation Systems 2025. 
    
   
    57 
     HCR  1.09 % 
      1.42 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.19 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    Y. Tuming Yuan:  Hourglass cascaded recurrent stereo
matching network . Image and Vision computing 2024. 
    
   
    58 
     UCFNet code  1.09 % 
      1.45 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.21 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Z. Shen, X. Song, Y. Dai, D. Zhou, Z. Rao and L. Zhang:  Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis 
and Machine Intelligence 2023. 
    
   
    59 
     MatchStereo code  1.09 % 
      1.39 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
   
    T. Yan, T. Liu, X. Yang, Q. Zhao and Z. Xia:  MatchAttention: Matching the Relative 
Positions for High-Resolution Cross-View Matching . arXiv preprint arXiv:2510.14260 2025. 
    
   
    60 
     MSCA-IGEV  1.09 % 
      1.39 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.2 s 
     GPU @ 3.0 Ghz (Python) 
      
   
     
   
    61 
     GAStereo  1.10 % 
      1.47 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.02 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    62 
     CMSF-stereo  1.10 % 
      1.42 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    63 
     LoS  1.10 % 
      1.38 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.19 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    K. Li, L. Wang, Y. Zhang, K. Xue, S. Zhou and Y. Guo:  LoS: Local Structure Guided Stereo 
Matching . Proceedings of the IEEE/CVF Conference 
on Computer Vision and Pattern Recognition (CVPR) 2024. 
    
   
    64 
     xcit-stereo  1.10 % 
      1.43 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    65 
     GGEV  1.10 % 
      1.44 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.04 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    66 
     Selective-RAFT code  1.10 % 
      1.43 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.45 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    X. Wang, G. Xu, H. Jia and X. Yang:  Selective-Stereo: Adaptive Frequency 
Information Selection for Stereo Matching . Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern
Recognition (CVPR) 2024. 
    
   
    67 
     middle stereo  1.10 % 
      1.45 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    68 
     HART code  1.11 % 
      1.38 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.34 s 
     NVIDIA Tesla A100 (Python) 
      
   
    Z. Chen, Y. Zhang, W. Li, B. Wang, Y. Wu, Y. Zhao and C. Chen:  Hadamard Attention Recurrent Transformer: 
A Strong Baseline for Stereo Matching Transformer . arXiv preprint arXiv:2501.01023 2025. 
    
   
    69 
     MSCA-stereo  1.11 % 
      1.44 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.4 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    70 
     volume rese  1.11 % 
      1.46 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    71 
     NLCA-Net v2 code  1.11 % 
      1.46 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.67 s 
     GPU @ >3.5 Ghz (Python) 
      
   
    Z. Rao, D. Yuchao, S. Zhelun and H. Renjie:  Rethinking Training Strategy in 
Stereo Matching . IEEE TRANSACTIONS ON NEURAL 
NETWORKS AND LEARNING SYSTEMS . 
    
   
    72 
     IGEV-Stereo(32) code  1.12 % 
      1.43 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.32 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
    G. Xu, X. Wang, X. Ding and X. Yang:  Iterative Geometry Encoding Volume for 
Stereo Matching . CVPR 2023. 
    
   
    73 
     FSU-Stereo  1.12 % 
      1.49 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    74 
     SG-IGEV  1.12 % 
      1.39 % 
       0.4 px 
       0.4 px 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng:  The Sampling-Gaussian for stereo 
matching . 2024. 
    
   
    75 
     IGEV-Stereo  1.12 % 
      1.44 % 
       0.4 px 
       0.4 px 
     100.00 % 
     0.18 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
    G. Xu, X. Wang, X. Ding and X. Yang:  Iterative Geometry Encoding Volume for 
Stereo Matching . CVPR 2023. 
    
   
    76 
     LaC+GwcNet code  1.13 % 
      1.49 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.65 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    B. Liu, H. Yu and Y. Long:  Local Similarity Pattern and Cost Self-
Reassembling for Deep Stereo Matching Networks . Proceedings of the AAAI Conference on 
Artificial Intelligence 2022. 
    
   
    77 
     ACVNet code  1.13 % 
      1.47 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.2 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
    G. Xu, J. Cheng, P. Guo and X. Yang:  Attention Concatenation Volume for 
Accurate and Efficient Stereo Matching . CVPR 2022. 
    
   
    78 
     LEAStereo code  1.13 % 
      1.45 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.3 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    X. Cheng, Y. Zhong, M. Harandi, Y. Dai, X. Chang, H. Li, T. Drummond and Z. Ge:  Hierarchical Neural Architecture Search 
for Deep Stereo Matching . Advances in Neural Information 
Processing Systems 2020. 
    
   
    79 
     CREStereo code  1.14 % 
      1.46 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.40 s 
     GPU @ >3.5 Ghz (C/C++) 
      
   
    J. Li, P. Wang, P. Xiong, T. Cai, Z. Yan, L. Yang, J. Liu, H. Fan and S. Liu:  Practical Stereo Matching via 
Cascaded Recurrent Network with Adaptive 
Correlation . 2022. 
    
   
    80 
     MMBStereo  1.15 % 
      1.55 % 
       0.4 px 
       0.5 px 
     100.00 % 
     51ms 
     GPU @ 2.0 Ghz (Python) 
      
   
     
   
    81 
     ForeEdge-Stereo  1.15 % 
      1.47 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.38 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    82 
     ESMStereo-L-gwc code  1.15 % 
      1.52 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.026 s 
     RTX 4070S (Python) 
      
   
     
   
    83 
     HSGC-Stereo  1.17 % 
      1.52 % 
       0.4 px 
       0.5 px 
     100.00 % 
     1.36 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    84 
     [ICCV 2025] DKT-SMoE code  1.17 % 
      1.56 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.20 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    J. Yun Wang:  learning robust stereo matching in the wild 
with selective mixture-of-experts . arXiv preprint arXiv:2507.04631 2025. 
    
   
    85 
     AcfNet code  1.17 % 
      1.54 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.48 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    Y. Zhang, Y. Chen, X. Bai, S. Yu, K. Yu, Z. Li and K. Yang:  Adaptive Unimodal Cost Volume Filtering for Deep 
Stereo Matching . AAAI 2020. 
    
   
    86 
     DSIGA  1.17 % 
      1.51 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.3 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    87 
     Abc-Net  1.18 % 
      1.59 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.72 s 
     4 cores @ 2.5 Ghz (Python) 
      
   
    X. Li, Y. Fan, G. Lv and H. Ma:  Area-based correlation and non-local 
attention network for stereo matching . The Visual Computer 2021. 
    
   
    88 
     CAL-Net  1.19 % 
      1.53 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.44 s 
     4 cores @ 2.5 Ghz (Python) 
      
   
    S. Chen, B. Li, W. Wang, H. Zhang, H. Li and Z. Wang:  Cost Affinity Learning Network for 
Stereo Matching . IEEE International Conference on 
Acoustics, Speech and Signal Processing,
               ICASSP 2021, Toronto, ON, Canada, 
June 6-11, 2021 2021. 
    
   
    89 
     GANet-deep code  1.19 % 
      1.60 % 
       0.4 px 
       0.5 px 
     100.00 % 
     1.8 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    F. Zhang, V. Prisacariu, R. Yang and P. Torr:  GA-Net: Guided Aggregation Net for 
End-to-end Stereo Matching . Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 
(CVPR) 2019. 
    
   
    90 
     volume rese  1.19 % 
      1.56 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    91 
     HSGC-Stereo(wo SCE)  1.19 % 
      1.46 % 
       0.4 px 
       0.5 px 
     100.00 % 
     1.71 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    92 
     OptStereo  1.20 % 
      1.61 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.10 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    H. Wang, R. Fan, P. Cai and M. Liu:  PVStereo: Pyramid voting module for 
end-to-end self-supervised stereo matching . IEEE Robotics and Automation Letters 2021. 
    
   
    93 
     lms-stereo  1.20 % 
      1.60 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    94 
     GHUStereo code  1.21 % 
      1.61 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.036 s 
     RTX 4070  (Python) 
      
   
    M. Tahmasebi, S. Huq, K. Meehan and M. McAfee:  GHUStereo: A Lightweight Real-Time Stereo Matching Network with Guided Hourglass Up-Sampling . SSRN Electronic Journal 2025. 
    
   
    95 
     NLCA-Net-3 code  1.21 % 
      1.60 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.44 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He:  NLCA-Net: a non-local context attention 
network for stereo matching . APSIPA Transactions on Signal and 
Information Processing 2020. 
    
   
    96 
     G2L-Stereo  1.22 % 
      1.57 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.05 s 
     GPU @ 1.5 Ghz (Python) 
      
   
    J. Tang, G. Peng, J. Liu and B. Yu:  G2L-Stereo: Global to Local Two-Stage Real-
Time Stereo Matching Network . IEEE Transactions on Computational 
Imaging 2025. 
    
   
    97 
     LLKStereo  1.22 % 
      1.61 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.06 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    98 
     CFNet code  1.23 % 
      1.58 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    Z. Shen, Y. Dai and Z. Rao:  CFNet: Cascade and Fused Cost Volume for 
Robust Stereo Matching . IEEE Conference on Computer Vision 
and 
Pattern Recognition (CVPR) 2021. Digging Into Uncertainty-Based Pseudo-
Label for Robust Stereo Matching . IEEE Transactions on Pattern Analysis 
and Machine Intelligence 2023. 
    
   
    99 
     PFSMNet code  1.23 % 
      1.58 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.31 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    K. Zeng, Y. Wang, Q. Zhu, J. Mao and H. Zhang:  Deep Progressive Fusion Stereo Network . IEEE Transactions on Intelligent 
Transportation Systems 2021. 
    
   
    100 
     NLCA-Net code  1.25 % 
      1.62 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.6 s 
     GPU @ 2.5 Ghz (C/C++) 
      
   
    Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He:  NLCA-Net: a non-local context attention 
network for stereo matching . APSIPA Transactions on Signal and 
Information Processing 2020. 
    
   
    101 
     Context-Stereo-I  1.26 % 
      1.66 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.04 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    102 
     SCV-Stereo code  1.27 % 
      1.68 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.08 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    H. Wang, R. Fan and M. Liu:  SCV-Stereo: Learning stereo 
matching from a sparse cost volume . 2021 IEEE International Conference 
on Image Processing (ICIP) 2021. 
    
   
    103 
     BANet-3D  1.27 % 
      1.72 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    104 
     NLSDR-Net  1.28 % 
      1.62 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.06 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    105 
     RT-IGEV code  1.29 % 
      1.68 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    G. Xu, X. Wang, Z. Zhang, J. Cheng, C. Liao and X. Yang:  IGEV++: Iterative Multi-range Geometry 
Encoding Volumes for Stereo Matching . IEEE TPAMI 2025. 
    
   
    106 
     DCVSMNet code  1.30 % 
      1.67 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.053 s 
     RTX 4070S (PyTorch) 
      
   
    M. Tahmasebi, S. Huq, K. Meehan and M. McAfee:  DCVSMNet: Double Cost Volume Stereo Matching Network . Neurocomputing 2025. 
    
   
    107 
     DPCTF-S  1.31 % 
      1.72 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.11 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    Y. Deng, J. Xiao, S. Zhou and J. Feng:  Detail Preserving Coarse-to-Fine Matching 
for Stereo Matching and Optical Flow . IEEE Transactions on Image Processing 2021. 
    
   
    108 
     CCAStereo  1.31 % 
      1.64 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.05 s 
     GPU @ 1.5 Ghz (Python) 
      
   
    H. Hashemi, Y. Baleghi and M. Hassanzadeh:  Real-time stereo matching with enhanced 
geometric comprehension through cross-attention 
integration . Neurocomputing 2025. 
    
   
    109 
     AMNet  1.32 % 
      1.73 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.9 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    X. Du, M. El-Khamy and J. Lee:  AMNet: Deep Atrous Multiscale Stereo 
Disparity Estimation Networks . 2019. 
    
   
    110 
     GwcNet-gc code  1.32 % 
      1.70 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.32 s 
     GPU @ 2.0 Ghz (Java + C/C++) 
      
   
    X. Guo, K. Yang, W. Yang, X. Wang and H. Li:  Group-wise correlation stereo network . CVPR 2019. 
    
   
    111 
     PGNet  1.32 % 
      1.79 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.7 s 
     1 core @ 2.5 Ghz (python) 
      
   
    S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai:  PGNet: Panoptic parsing guided deep stereo 
matching . Neurocomputing 2021. 
    
   
    112 
     LightStereo-H code  1.34 % 
      1.62 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.05 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen:  Lightstereo: Channel boost is all you 
need for efficient 2d cost aggregation . ICRA 2025. 
    
   
    113 
     SG-MSNet3D  1.34 % 
      1.74 % 
       0.5 px 
       0.5 px 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng:  The Sampling-Gaussian for stereo 
matching . 2024. 
    
   
    114 
     GANet-15 code  1.36 % 
      1.80 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.36 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    F. Zhang, V. Prisacariu, R. Yang and P. Torr:  GA-Net: Guided Aggregation Net for 
End-to-end Stereo Matching . Proceedings of the IEEE Conference 
on Computer Vision and Pattern Recognition 
(CVPR) 2019. 
    
   
    115 
     FIA-Net  1.37 % 
      1.83 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    116 
     CAR-Stereo  1.38 % 
      1.80 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.01 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    117 
     [TIP25]ADStereo_fast code  1.38 % 
      1.72 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Y. Wang, K. Li, L. Wang, J. Hu, D. Wu and Y. Guo:  ADStereo: Efficient Stereo Matching with 
Adaptive Downsampling and Disparity Alignment . IEEE Transactions on Image Processing 2025. 
    
   
    118 
     SGNet  1.38 % 
      1.85 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.6 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
   
    S. Chen, Z. Xiang, C. Qiao, Y. Chen and T. Bai:  SGNet: Semantics Guided Deep Stereo 
Matching . Proceedings of the Asian Conference 
on Computer Vision (ACCV) 2020. 
    
   
    119 
     BANet-2D  1.38 % 
      1.79 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.02 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    120 
     SG-PSMnet  1.38 % 
      1.80 % 
       0.5 px 
       0.5 px 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng:  The Sampling-Gaussian for stereo 
matching . 2024. 
    
   
    121 
     DPDNet_3D  1.38 % 
      1.75 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.2 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    122 
     LCA-Stereo  1.39 % 
      1.78 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.03 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
     
   
    123 
     Context-Stereo code  1.39 % 
      1.75 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    124 
     HD^3-Stereo code  1.40 % 
      1.80 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.14 s 
     NVIDIA Pascal Titan XP 
      
   
    Z. Yin, T. Darrell and F. Yu:  Hierarchical Discrete Distribution Decomposition 
for Match Density Estimation . CVPR 2019. 
    
   
    125 
     HITNet code  1.41 % 
      1.89 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python + C/C++) 
      
   
    V. Tankovich, C. Häne, Y. Zhang, A. Kowdle, S. Fanello and S. Bouaziz:  HITNet: Hierarchical Iterative Tile 
Refinement Network for Real-time Stereo 
Matching . CVPR 2021. 
    
   
    126 
     CFP-Net code  1.41 % 
      1.83 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.95 s 
     8 cores @ 2.5 Ghz (Python) 
      
   
    Z. Zhu, M. He, Y. Dai, Z. Rao and B. Li:  Multi-scale Cross-form Pyramid Network for Stereo Matching . arXiv preprint 2019. 
    
   
    127 
     LXF-Stereo  1.42 % 
      1.77 % 
       0.5 px 
       0.5 px 
     100.00 % 
     50 ms 
     GPU @ 2.0 Ghz (Python) 
      
   
     
   
    128 
     WSMCnet code  1.42 % 
      1.90 % 
       0.6 px 
       0.6 px 
     100.00 % 
     0.39 s 
     GPU @ Nvidia GTX 1070 (Pytorch) 
      
   
    Y. Wang, H. Wang, G. Yu, M. Yang, Y. Yuan and J. Quan:  Stereo Matching Algorithm Based on Three-Dimensional Convolutional Neural Network . Acta Optica Sinica 2019. 
    
   
    129 
     Fast-ACVNet+ code  1.45 % 
      1.85 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.05 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
    G. Xu, Y. Wang, J. Cheng, J. Tang and X. Yang:  Accurate and efficient stereo matching
via attention concatenation volume . IEEE Transactions on Pattern Analysis
and Machine Intelligence 2023. 
    
   
    130 
     EdgeStereo-V2  1.46 % 
      1.83 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.32 s 
     Nvidia GTX Titan Xp 
      
   
    X. Song, X. Zhao, L. Fang, H. Hu and Y. Yu:  Edgestereo: An effective multi-task 
learning network for stereo matching and edge 
detection . International Journal of Computer 
Vision (IJCV) 2019. 
    
   
    131 
     MABNet_origin code  1.47 % 
      1.89 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.38 s 
     Nvidia rtx2080ti (Python) 
      
   
    J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu:  MABNet: A Lightweight Stereo Network 
Based on Multibranch Adjustable Bottleneck 
Module . . 
    
   
    132 
     SSPCVNet  1.47 % 
      1.90 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.9 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    Z. Wu, X. Wu, X. Zhang, S. Wang and L. Ju:  Semantic Stereo Matching With Pyramid Cost 
Volumes . The IEEE International Conference on 
Computer Vision (ICCV) 2019. 
    
   
    133 
     G2L-ROB  1.49 % 
      1.92 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.05 s 
     GPU @ 1.0 Ghz (Python) 
      
   
     
   
    134 
     PSMNet code  1.49 % 
      1.89 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.41 s 
     Nvidia Titan Xp 
      
   
    J. Chang and Y. Chen:  Pyramid Stereo Matching Network . arXiv preprint arXiv:1803.08669 2018. 
    
   
    135 
     HSM code  1.53 % 
      1.99 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.15 s 
     Titan X Pascal 
      
   
    G. Yang, J. Manela, M. Happold and D. Ramanan:  Hierarchical Deep Stereo Matching on 
High- 
Resolution Images . The IEEE Conference on Computer 
Vision 
and Pattern Recognition (CVPR) 2019. 
    
   
    136 
     GhostStereoNet  1.54 % 
      1.98 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.04 s 
     GPU @ 3.0 Ghz (Python) 
      
   
     
   
    137 
     LightStereo-L code  1.55 % 
      1.87 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.03 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen:  Lightstereo: Channel boost is all you 
need for efficient 2d cost aggregation . ICRA 2025. 
    
   
    138 
     AANet+ code  1.55 % 
      2.04 % 
       0.4 px 
       0.5 px 
     100.00 % 
     0.06 s 
     NVIDIA V100 GPU 
      
   
    H. Xu and J. Zhang:  AANet: Adaptive Aggregation Network 
for Efficient Stereo Matching . CVPR 2020. 
    
   
    139 
     CoEx code  1.55 % 
      1.93 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.027 s 
     RTX 2080Ti (Python) 
      
   
    A. Bangunharcana, J. Cho, S. Lee, I. Kweon, K. Kim and S. Kim:  Correlate-and-Excite: Real-Time Stereo Matching via Guided Cost Volume Excitation . 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) 2021. 
    
   
    140 
     LightStereo-M code  1.56 % 
      1.91 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.02 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen:  Lightstereo: Channel boost is all you 
need for efficient 2d cost aggregation . ICRA 2025. 
    
   
    141 
     JBFNet2  1.60 % 
      2.02 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.29 s 
     GPU @ 3.0 Ghz (Python) 
      
   
     
   
    142 
     BGNet+  1.62 % 
      2.03 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    B. Xu, Y. Xu, X. Yang, W. Jia and Y. Guo:  Bilateral Grid Learning for Stereo Matching 
Network . Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition (CVPR) 2021. 
    
   
    143 
     MSDC-Net  1.63 % 
      2.09 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.6 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Z. Rao, M. He, Y. Dai, Z. Zhu, B. Li and R. He:  MSDC-Net: Multi-Scale Dense and 
Contextual Networks for Stereo Matching . 2019 Asia-Pacific Signal and 
Information Processing Association Annual Summit 
and Conference (APSIPA ASC) 2019. 
    
   
    144 
     SG-MSNet2D  1.63 % 
      2.09 % 
       0.5 px 
       0.6 px 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    B. Pan, j. jiao, B. Yao, J. Pang and J. Cheng:  The Sampling-Gaussian for stereo 
matching . 2024. 
    
   
    145 
     WaveletStereo  1.66 % 
      2.18 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.27 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Anonymous:  WaveletStereo: Learning wavelet coefficients 
for stereo matching . arXiv: Computer Vision and Pattern 
Recognition 2019. 
    
   
    146 
     DBCANet code  1.68 % 
      2.04 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.1 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    147 
     SegStereo code  1.68 % 
      2.03 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.6 s 
     Nvidia GTX Titan Xp 
      
   
    G. Yang, H. Zhao, J. Shi, Z. Deng and J. Jia:  SegStereo: Exploiting Semantic 
Information for Disparity Estimation . ECCV 2018. 
    
   
    148 
     AutoDispNet-CSS code  1.70 % 
      2.05 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.9 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    T. Saikia, Y. Marrakchi, A. Zela, F. Hutter and T. Brox:  AutoDispNet: Improving Disparity 
Estimation with AutoML . The IEEE International 
Conference on Computer Vision (ICCV) 2019. 
    
   
    149 
     iResNet-i2 code  1.71 % 
      2.16 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.12 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Z. Liang, Y. Feng, Y. Guo, H. Liu, W. Chen, L. Qiao, L. Zhou and J. Zhang:  Learning for disparity estimation through feature constancy . Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018. 
    
   
    150 
     EFSNet  1.76 % 
      2.17 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.01 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    151 
     GC-NET  1.77 % 
      2.30 % 
       0.6 px 
       0.7 px 
     100.00 % 
     0.9 s 
     Nvidia GTX Titan X 
      
   
    A. Kendall, H. Martirosyan, S. Dasgupta, P. Henry, R. Kennedy, A. Bachrach and A. Bry:  End-to-End Learning of Geometry and Context for 
Deep Stereo Regression . Proceedings of the International Conference on 
Computer Vision (ICCV) 2017. 
    
   
    152 
     ERSCNet  1.80 % 
      2.30 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.28 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    Anonymous:  ERSCNet . Proceedings of the European 
Conference on Computer Vision (ECCV) 2020. 
    
   
    153 
     IINet  1.81 % 
      2.21 % 
       0.5 px 
       0.5 px 
     100.00 % 
     0.02 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    154 
     LightStereo-S code  1.88 % 
      2.34 % 
       0.6 px 
       0.6 px 
     100.00 % 
     0.01 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    X. Guo, C. Zhang, Y. Zhang, W. Zheng, D. Nie, M. Poggi and L. Chen:  Lightstereo: Channel boost is all you 
need for efficient 2d cost aggregation . ICRA 2025. 
    
   
    155 
     DPDNet_2D  1.89 % 
      2.42 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.09 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    156 
     AANet code  1.91 % 
      2.42 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.06 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    H. Xu and J. Zhang:  AANet: Adaptive Aggregation Network
for Efficient Stereo Matching . CVPR 2020. 
    
   
    157 
     BaCon-IGEV  1.92 % 
      2.31 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    158 
     PDSNet  1.92 % 
      2.53 % 
       0.9 px 
       1.0 px 
     100.00 % 
     0.5 s 
     1 core @ 2.5 Ghz (Python + C/C++) 
      
   
    S. Tulyakov, A. Ivanov and F. Fleuret:  Practical Deep Stereo (PDS): Toward 
applications-friendly deep stereo matching . Proceedings of the international conference 
on Neural Information Processing Systems (NIPS) 2018. 
    
   
    159 
     PVStereo  1.98 % 
      2.47 % 
       0.7 px 
       0.8 px 
     100.00 % 
     0.10 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    H. Wang, R. Fan, P. Cai and M. Liu:  PVStereo: Pyramid voting module 
for end-to-end self-supervised stereo matching . IEEE Robotics and Automation 
Letters 2021. 
    
   
    160 
     EFSNet-lite  2.01 % 
      2.56 % 
       0.6 px 
       0.7 px 
     100.00 % 
     0.01 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    161 
     EfficientStereo code  2.03 % 
      2.52 % 
       0.6 px 
       0.7 px 
     100.00 % 
     0.015 s 
     NVIDIA RTX 3090 (PyTorch) 
      
   
    J. Tang, J. Liu, S. Ding and others:  EfficientStereo: A Real-Time 
Stereo Matching Approach Using Lightweight Feature 
Extraction and Disparity-Dimensional Convolution . 2025. 
    
   
    162 
     FADNet code  2.04 % 
      2.46 % 
       0.5 px 
       0.6 px 
     100.00 % 
     0.05 s 
     Tesla V100 (Python) 
      
   
    Q. Wang, S. Shi, S. Zheng, K. Zhao and X. Chu:  FADNet: A Fast and Accurate Network 
for Disparity Estimation . arXiv preprint arXiv:2003.10758 2020. 
    
   
    163 
     MMStereo  2.04 % 
      2.52 % 
       0.6 px 
       0.7 px 
     100.00 % 
     0.04 s 
     Nvidia Titan RTX (Python) 
      
   
    K. Shankar, M. Tjersland, J. Ma, K. Stone and M. Bajracharya:  A Learned Stereo Depth System for 
Robotic Manipulation in Homes . . 
    
   
    164 
     BaCon-IGEV*  2.17 % 
      2.60 % 
       0.6 px 
       0.6 px 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    165 
     RecResNet code  2.21 % 
      2.94 % 
       0.6 px 
       0.7 px 
     100.00 % 
     0.3 s 
     GPU @ NVIDIA TITAN X (Tensorflow) 
      
   
    K. Batsos and P. Mordohai:  RecResNet: A Recurrent Residual CNN 
Architecture for Disparity Map Enhancement .  In International Conference on 3D 
Vision (3DV)  2018. 
    
   
    166 
     GMCR-Stereo  2.21 % 
      2.78 % 
       0.6 px 
       0.7 px 
     100.00 % 
     0.5 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    167 
     L-ResMatch code  2.27 % 
      3.40 % 
       0.7 px 
       1.0 px 
     100.00 % 
     48 s 
     Titan X (Torch7, CUDA) 
      
   
    A. Shaked and L. Wolf:  Improved Stereo Matching with Constant Highway 
Networks and Reflective Loss . arXiv preprint arxiv:1701.00165 2016. 
    
   
    168 
     CNNF+SGM  2.28 % 
      3.48 % 
       0.7 px 
       0.9 px 
     100.00 % 
     71 s 
     TESLA K40C 
      
   
    F. Zhang and B. Wah:  Fundamental Principles on Learning New 
Features for Effective Dense Matching . IEEE Transactions on Image 
Processing 2018. 
    
   
    169 
     SGM-Net  2.29 % 
      3.50 % 
       0.7 px 
       0.9 px 
     100.00 % 
     67 s 
     Titan X 
      
   
    A. Seki and M. Pollefeys:  SGM-Nets: Semi-Global Matching With Neural 
Networks . CVPR 2017. 
    
   
    170 
     SsSMnet  2.30 % 
      3.00 % 
       0.7 px 
       0.8 px 
     100.00 % 
     0.8 s 
     Titan Xp 
      
   
    Y. Zhong, Y. Dai and H. Li:  Self-Supervised Learning for Stereo 
Matching with Self-Improving Ability . arXiv:1709.00930 2017. 
    
   
    171 
     test model  2.34 % 
      2.70 % 
       0.7 px 
       0.7 px 
     100.00 % 
     .2 s 
     >8 cores @ 3.0 Ghz (C/C++) 
      
   
     
   
    172 
     PBCP  2.36 % 
      3.45 % 
       0.7 px 
       0.9 px 
     100.00 % 
     68 s 
     Nvidia GTX Titan X 
      
   
    A. Seki and M. Pollefeys:  Patch Based Confidence Prediction for 
Dense Disparity Map . British Machine Vision Conference 
(BMVC) 2016. 
    
   
    173 
     Displets v2 code  2.37 % 
      3.09 % 
       0.7 px 
       0.8 px 
     100.00 % 
     265 s 
     >8 cores @ 3.0 Ghz (Matlab + C/C++) 
      
   
    F. Guney and A. Geiger:  Displets: Resolving Stereo Ambiguities 
using Object 
Knowledge . Conference on Computer Vision and 
Pattern Recognition 
(CVPR) 2015. 
    
   
    174 
     RTSnet code  2.43 % 
      2.90 % 
       0.7 px 
       0.7 px 
     100.00 % 
     0.02 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    H. Lee and Y. Shin:  Real-Time Stereo Matching Network with High 
Accuracy . 2019 IEEE International Conference on Image 
Processing (ICIP) 2019. 
    
   
    175 
     MC-CNN-acrt code  2.43 % 
      3.63 % 
       0.7 px 
       0.9 px 
     100.00 % 
     67 s 
     Nvidia GTX Titan X (CUDA, Lua/Torch7) 
      
   
    J. Zbontar and Y. LeCun:  Stereo Matching by Training a Convolutional 
Neural Network to Compare Image Patches . Submitted to JMLR . 
    
   
    176 
     cfusion code  2.46 % 
      2.69 % 
       0.8 px 
       0.8 px 
     99.93 % 
     70 s 
     GPU (Matlab + CUDA) 
      
   
    V. Ntouskos and F. Pirri:  Confidence driven TGV fusion . arXiv preprint arXiv:1603.09302 2016. 
    
   
    177 
     Displets code  2.47 % 
      3.27 % 
       0.7 px 
       0.9 px 
     100.00 % 
     265 s 
     >8 cores @ 3.0 Ghz (Matlab + C/C++) 
      
   
    F. Guney and A. Geiger:  Displets: Resolving Stereo Ambiguities using Object Knowledge . Conference on Computer Vision and Pattern Recognition (CVPR) 2015. 
    
   
    178 
     RoSe  2.55 % 
      3.17 % 
       0.7 px 
       0.8 px 
     100.00 % 
     0.17 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    179 
     MC-CNN  2.61 % 
      3.84 % 
       0.8 px 
       1.0 px 
     100.00 % 
     100 s 
     Nvidia GTX Titan (CUDA, Lua/Torch7) 
      
   
    J. Zbontar and Y. LeCun:  Computing the Stereo Matching Cost with a 
Convolutional Neural Network . Conference on Computer Vision and 
Pattern Recognition (CVPR) 2015. 
    
   
    180 
     Fast DS-CS code  2.61 % 
      3.20 % 
       0.7 px 
       0.8 px 
     100.00 % 
     0.02 s 
     GPU @ 2.0 Ghz (Python + C/C++) 
      
   
    K. Yee and A. Chakrabarti:  Fast Deep Stereo with 2D Convolutional 
Processing of Cost Signatures . WACV 2020 (to appear). 
    
   
    181 
     Syn2Real Stereo  2.64 % 
      3.14 % 
       0.7 px 
       0.7 px 
     100.00 % 
     0.28 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    182 
     MABNet_tiny code  2.71 % 
      3.31 % 
       0.7 px 
       0.8 px 
     100.00 % 
     0.11 s 
     1 core @ 2.5 Ghz (Python) 
      
   
    J. Xing, Z. Qi, J. Dong, J. Cai and H. Liu:  MABNet: A Lightweight Stereo Network 
Based on Multibranch Adjustable Bottleneck 
Module . . 
    
   
    183 
     BaCon-IGEV-zeroshot  2.72 % 
      3.27 % 
       0.7 px 
       0.8 px 
     100.00 % 
     0.18 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    184 
     PRSM code  2.78 % 
      3.00 % 
       0.7 px 
       0.7 px 
     100.00 % 
     300 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    C. Vogel, K. Schindler and S. Roth:  3D Scene Flow Estimation with a 
Piecewise Rigid Scene Model . ijcv 2015. 
    
   
    185 
     DualNet (step 1) code  2.82 % 
      3.45 % 
       0.7 px 
       0.8 px 
     100.00 % 
     0.17 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Y. Wang, J. Zheng, C. Zhang, Z. Zhang, K. Li, Y. Zhang and J. Hu:  DualNet: Robust Self-Supervised Stereo 
Matching with Pseudo-Label Supervision . Proceedings of the AAAI Conference on 
Artificial Intelligence 2025. 
    
   
    186 
     SPS-StFl  2.83 % 
      3.64 % 
       0.8 px 
       0.9 px 
     100.00 % 
     35 s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    K. Yamaguchi, D. McAllester and R. Urtasun:  Efficient Joint Segmentation, Occlusion Labeling, Stereo 
and Flow Estimation . ECCV 2014. 
    
   
    187 
     MC-CNN-WS code  3.02 % 
      4.45 % 
       0.8 px 
       1.0 px 
     100.00 % 
     1.35 s 
     1 core 2.5 Ghz + K40 NVIDIA, Lua-Torch 
      
   
    S. Tulyakov, A. Ivanov and F. Fleuret:  Weakly supervised learning of deep 
metrics for stereo reconstruction . ICCV 2017. 
    
   
    188 
     VC-SF  3.05 % 
      3.31 % 
       0.8 px 
       0.8 px 
     100.00 % 
     300 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    C. Vogel, S. Roth and K. Schindler:  View-Consistent 3D Scene Flow 
Estimation over Multiple Frames . Proceedings of European 
Conference on Computer Vision. Lecture 
Notes in, Computer Science 2014. 
    
   
    189 
     Content-CNN  3.07 % 
      4.29 % 
       0.8 px 
       1.0 px 
     100.00 % 
     0.7 s 
     Nvidia GTX Titan X (Torch) 
      
   
    W. Luo, A. Schwing and R. Urtasun:  Efficient Deep Learning for Stereo Matching . CVPR 2016. 
    
   
    190 
     Pseudo-Stereo  3.08 % 
      3.62 % 
       0.7 px 
       0.8 px 
     100.00 % 
     0.45 s 
     1 core @ 2.5 Ghz (Python) 
      
   
     
   
    191 
     Deep Embed  3.10 % 
      4.24 % 
       0.9 px 
       1.1 px 
     100.00 % 
     3 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Z. Chen, X. Sun, Y. Yu, L. Wang and C. Huang:  A Deep Visual Correspondence 
Embedding Model for Stereo Matching Costs . ICCV 2015. 
    
   
    192 
     JSOSM  3.15 % 
      3.94 % 
       0.8 px 
       0.9 px 
     100.00 % 
     105 s 
     8 cores @ 2.5 Ghz (C/C++) 
      
   
    X. Li and J. Liu:  EFFICIENT STEREO MATCHING USING SEGMENT 
OPTIMIZATION . ICIP  2016. 
    
   
    193 
     FD-Fusion code  3.16 % 
      3.85 % 
       0.7 px 
       0.8 px 
     100.00 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    M. Ferrera, A. Boulch and J. Moras:  Fast Stereo Disparity Maps Refinement By Fusion of Data-Based And Model-Based Estimations . International Conference on 3D Vision (3DV) 2019. 
    
   
    194 
     OSF code  3.28 % 
      4.07 % 
       0.8 px 
       0.9 px 
     99.98 % 
     50 min 
     1 core @ 3.0 Ghz (Matlab + C/C++) 
      
   
    M. Menze and A. Geiger:  Object Scene Flow for Autonomous Vehicles . Conference on Computer Vision and Pattern Recognition (CVPR) 2015. 
    
   
    195 
     CoR code  3.30 % 
      4.10 % 
       0.8 px 
       0.9 px 
     100.00 % 
     6 s 
     6 cores @ 3.3 Ghz (Matlab + C/C++) 
      
   
    A. Chakrabarti, Y. Xiong, S. Gortler and T. Zickler:  Low-level Vision by Consensus in a Spatial 
Hierarchy of Regions . CVPR 2015. 
    
   
    196 
     TCD-CRF  3.32 % 
      5.24 % 
       0.9 px 
       1.9 px 
     100.00 % 
     60 s 
     4 cores @ 3.5 Ghz (C/C++) 
      
   
    S. Arjomand Bigdeli, G. Budweiser and M. Zwicker:  Temporally Coherent Disparity Maps Using CRFs with Fast 4D Filtering . Proc. ACPR 2015. 
    
   
    197 
     SPS-St code  3.39 % 
      4.41 % 
       0.9 px 
       1.0 px 
     100.00 % 
     2 s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    K. Yamaguchi, D. McAllester and R. Urtasun:  Efficient Joint Segmentation, Occlusion Labeling, Stereo and 
Flow Estimation . ECCV 2014. 
    
   
    198 
     PCBP-SS  3.40 % 
      4.72 % 
       0.8 px 
       1.0 px 
     100.00 % 
     5 min 
     4 cores @ 2.5 Ghz (Matlab + C/C++) 
      
   
    K. Yamaguchi, D. McAllester and R. Urtasun:  Robust Monocular Epipolar Flow Estimation . CVPR 2013. 
    
   
    199 
     P3SNet+ code  3.55 % 
      4.42 % 
       0.8 px 
       0.9 px 
     100.00 % 
     0.01 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    A. Emlek and M. Peker:  P3SNet: Parallel Pyramid Pooling Stereo 
Network . IEEE Transactions on Intelligent 
Transportation Systems 2023. 
    
   
    200 
     CBMV code  3.56 % 
      4.73 % 
       0.9 px 
       1.1 px 
     100.00 % 
     250 s 
     6 cores@3.0Ghz(Python,C/C++,CUDA TitanX) 
      
   
    K. Batsos, C. Cai and P. Mordohai:  CBMV: A Coalesced Bidirectional Matching 
Volume for Disparity Estimation . 2018. 
    
   
    201 
     ReaSMNet  3.63 % 
      4.22 % 
       0.8 px 
       0.9 px 
     100.00 % 
     0.01 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    202 
     P3SNet code  3.65 % 
      4.46 % 
       0.9 px 
       1.0 px 
     100.00 % 
     0.01 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    A. Emlek and M. Peker:  P3SNet: Parallel Pyramid Pooling Stereo 
Network . IEEE Transactions on Intelligent 
Transportation Systems 2023. 
    
   
    203 
     DDS-SS  3.83 % 
      4.59 % 
       0.9 px 
       1.0 px 
     100.00 % 
     1 min 
     1 core @ 2.5 Ghz (Matlab + C/C++) 
      
   
    D. Wei, C. Liu and W. Freeman:  A Data-driven Regularization Model for Stereo and Flow . 3DTV-Conference, 2014 International Conference on 2014. 
    
   
    204 
     Un-ViTAStereo  3.84 % 
      4.55 % 
       0.8 px 
       0.9 px 
     100.00 % 
     0.22 s 
     GPU @ 2.5 Ghz (Python) 
      
   
     
   
    205 
     StereoSLIC  3.92 % 
      5.11 % 
       0.9 px 
       1.0 px 
     99.89 % 
     2.3 s 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    K. Yamaguchi, D. McAllester and R. Urtasun:  Robust Monocular Epipolar Flow Estimation . CVPR 2013. 
    
   
    206 
     SMCM  3.94 % 
      5.24 % 
       0.9 px 
       1.1 px 
     100.00 % 
     1800 s 
     Nvidia GTX 1080 (Caffe) 
      
   
    M. Yang, Y. Liu, Y. Cai and Z. You:  Stereo matching based on classification of 
materials . Neurocomputing 2016. 
    
   
    207 
     PR-Sf+E  4.02 % 
      4.87 % 
       0.9 px 
       1.0 px 
     100.00 % 
     200 s 
     4 cores @ 3.0 Ghz (Matlab + C/C++) 
      
   
    C. Vogel, K. Schindler and S. Roth:  Piecewise Rigid Scene Flow . International Conference on Computer 
Vision (ICCV) 2013. 
    
   
    208 
     PCBP  4.04 % 
      5.37 % 
       0.9 px 
       1.1 px 
     100.00 % 
     5 min 
     4 cores @ 2.5 Ghz (Matlab + C/C++) 
      
   
    K. Yamaguchi, T. Hazan, D. McAllester and R. Urtasun:  Continuous Markov Random Fields for Robust Stereo 
Estimation . ECCV 2012. 
    
   
    209 
     DispNetC code  4.11 % 
      4.65 % 
       0.9 px 
       1.0 px 
     100.00 % 
     0.06 s 
     Nvidia GTX Titan X (Caffe) 
      
   
    N. Mayer, E. Ilg, P. Häusser, P. Fischer, D. Cremers, A. Dosovitskiy and T. Brox:  A Large Dataset to Train 
Convolutional Networks for Disparity, Optical 
Flow, and Scene Flow Estimation . CVPR 2016. 
    
   
    210 
     CSPMS  4.13 % 
      5.92 % 
       1.2 px 
       1.6 px 
     100.00 % 
     6 s 
     4 cores @ 2.5 Ghz (C/C++) 
      
   
    J. Cho and M. Humenberger:  Fast PatchMatch Stereo 
Matching Using Multi-Scale Cost Fusion for 
Automotive Applications . IV 2015. 
    
   
    211 
     SGM-post  4.27 % 
      5.33 % 
       1.0 px 
       1.1 px 
     100.00 % 
     5 s 
     4 cores @ 2.5 Ghz (C/C++) 
      
   
    Z. Zhong:  Efficient Learning based Semi-Global Stereo 
Matching . 2015 submitted. 
    
   
    212 
     MBM  4.35 % 
      5.43 % 
       1.0 px 
       1.1 px 
     100.00 % 
     0.2 s 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    N. Einecke and J. Eggert:  A Multi-Block-Matching Approach for Stereo . IV 2015. 
    
   
    213 
     PR-Sceneflow  4.36 % 
      5.22 % 
       0.9 px 
       1.1 px 
     100.00 % 
     150 sec 
     4 core @ 3.0 Ghz (Matlab - C/C++) 
      
   
    C. Vogel, K. Schindler and S. Roth:  Piecewise Rigid Scene Flow . International Conference on Computer 
Vision (ICCV) 2013. 
    
   
    214 
     CRD-Fusion code  4.38 % 
      5.40 % 
       0.9 px 
       1.1 px 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    X. Fan, S. Jeon and B. Fidan:  Occlusion-Aware Self-Supervised Stereo 
Matching with Confidence Guided Raw Disparity 
Fusion . Conference on Robots and Vision 2022. 
    
   
    215 
     CoR-Conf code  4.49 % 
      5.26 % 
       1.0 px 
       1.2 px 
     96.37 % 
     6 s 
     6 cores @ 3.3 Ghz (Matlab + C/C++) 
      
   
    A. Chakrabarti, Y. Xiong, S. Gortler and T. Zickler:  Low-level Vision by Consensus in a Spatial 
Hierarchy of Regions . CVPR 2015. 
    
   
    216 
     Flow2Stereo  4.58 % 
      5.11 % 
       1.0 px 
       1.1 px 
     100.00 % 
     0.05 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    P. Liu, I. King, M. Lyu and J. Xu:  Flow2Stereo: Effective Self-Supervised 
Learning of Optical Flow and Stereo Matching . CVPR 2020. 
    
   
    217 
     DispSegNet  4.68 % 
      5.66 % 
       0.9 px 
       1.0 px 
     100.00 % 
     0.9 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    J. Zhang, K. Skinner, R. Vasudevan and M. Johnson-Roberson:  DispSegNet: Leveraging Semantics for End-
to-End Learning of Disparity Estimation From 
Stereo Imagery . IEEE Robotics and Automation Letters 2019. 
    
   
    218 
     pSGM  4.68 % 
      6.13 % 
       1.0 px 
       1.4 px 
     100.00 % 
     7.92 s 
     4 cores @ 3.5 Ghz (C/C++) 
      
   
    Y. Lee, M. Park, Y. Hwang, Y. Shin and C. Kyung:  Memory-Efficient Parametric Semiglobal 
Matching . IEEE Signal Processing Letters 2018. 
    
   
    219 
     AARBM  4.86 % 
      5.94 % 
       1.0 px 
       1.2 px 
     100.00 % 
     0.25 s 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    N. Einecke and J. Eggert:  Block-Matching Stereo with Relaxed Fronto-Parallel Assumption . IV 2014. 
    
   
    220 
     wSGM  4.97 % 
      6.18 % 
       1.3 px 
       1.6 px 
     97.03 % 
     6s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    R. Spangenberg, T. Langner and R. Rojas:  Weighted Semi-Global Matching and Center-Symmetric Census Transform for Robust Driver Assistance . CAIP 2013. 
    
   
    221 
     AABM  4.97 % 
      6.04 % 
       1.0 px 
       1.2 px 
     100.00 % 
     0.12 s 
     1 core @ 3.1 Ghz (C/C++) 
      
   
    N. Einecke and J. Eggert:  Stereo Image Warping for Improved Depth Estimation of Road Surfaces . IV 2013. 
    
   
    222 
     ATGV  5.02 % 
      6.88 % 
       1.0 px 
       1.6 px 
     100.00 % 
     6 min 
     >8 cores @ 3.0 Ghz (Matlab + C/C++) 
      
   
    R. Ranftl, T. Pock and H. Bischof:  Minimizing TGV-based Variational Models with Non-Convex Data terms . ICSSVM 2013. 
    
   
    223 
     rSGM code  5.03 % 
      6.60 % 
       1.1 px 
       1.5 px 
     97.22 % 
     0.2 s 
     4 cores @ 2.6 Ghz (C/C++) 
      
   
    R. Spangenberg, T. Langner, S. Adfeldt and R. Rojas:  Large Scale Semi-Global Matching on the CPU . IV 2014. 
    
   
    224 
     iSGM  5.11 % 
      7.15 % 
       1.2 px 
       2.1 px 
     94.70 % 
     8 s 
     2 cores @ 2.5 Ghz (C/C++) 
      
   
    S. Hermann and R. Klette:  Iterative Semi-Global Matching for Robust Driver 
Assistance Systems . ACCV 2012. 
    
   
    225 
     RBM  5.18 % 
      6.21 % 
       1.1 px 
       1.3 px 
     100.00 % 
     0.2 s 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    N. Einecke and J. Eggert:  Block-Matching Stereo with Relaxed Fronto-Parallel Assumption . IV 2014. 
    
   
    226 
     ARW code  5.20 % 
      6.87 % 
       1.2 px 
       1.5 px 
     99.33 % 
     4.6s 
     1 core @ 3.5 Ghz (MATLAB+C/C++) 
      
   
    S. Lee, J. Lee, J. Lim and I. Suh:  Robust Stereo Matching using Adaptive Random 
Walk with Restart Algorithm . Image and vision computing (accepted) 2015. 
    
   
    227 
     DLP  5.28 % 
      7.21 % 
       1.2 px 
       2.0 px 
     100.00 % 
     60 s 
     8 cores @ >3.5 Ghz (C/C++) 
      
   
    V. Nguyen, H. Nguyen and J. Jeon:  Robust Stereo Data Cost With a Learning 
Strategy . IEEE Transactions on Intelligent 
Transportation Systems 2017. 
    
   
    228 
     Ensemble  5.34 % 
      6.91 % 
       1.5 px 
       2.0 px 
     100.00 % 
     135 s 
     2 cores @ >3.5 Ghz (Matlab) 
      
   
    A. Spyropoulos and P. Mordohai:  Ensemble Classifier for Combining Stereo 
Matching Algorithms . International Conference on 3D Vision 
(3DV) 2015. 
    
   
    229 
     ALTGV  5.36 % 
      6.49 % 
       1.1 px 
       1.2 px 
     100.00 % 
     20 s 
     GPU @ 2.5 Ghz (C/C++) 
      
   
    G. Kuschk and D. Cremers:  Fast and Accurate Large-scale Stereo Reconstruction using Variational Methods . ICCV Workshop on Big Data in 3D Computer Vision 2013. 
    
   
    230 
     SNCC  5.40 % 
      6.44 % 
       1.2 px 
       1.3 px 
     100.00 % 
     0.11 s 
     1 core @ 3.1 Ghz (C/C++) 
      
   
    N. Einecke and J. Eggert:  A Two-Stage Correlation Method for Stereoscopic Depth Estimation . DICTA 2010. 
    
   
    231 
     CAT  5.45 % 
      6.54 % 
       1.1 px 
       1.2 px 
     100.00 % 
     10 s 
     1 core @ 3.5 Ghz (C/C++) 
      
   
    J. Ha, J. Jeon, G. Bae, S. Jo and H. Jeong:  Cost Aggregation Table: Cost Aggregation Method Using Summed Area Table Scheme for Dense Stereo Correspondence . Advances in Visual Computing 2014. 
    
   
    232 
     SGM  5.76 % 
      7.00 % 
       1.2 px 
       1.3 px 
     85.80 % 
     3.7 s 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    H. Hirschmueller:  Stereo Processing by Semi-Global Matching and Mutual Information . PAMI 2008. 
    
   
    233 
     mSGM-LDE  6.01 % 
      8.22 % 
       1.4 px 
       2.4 px 
     100.00 % 
     55 s 
     2 cores @ 2.5 Ghz (C/C++) 
      
   
    V. Nguyen, D. Nguyen, S. Lee and J. Jeon:  Local Density Encoding for Robust Stereo 
Matching . TCSVT 2014. 
    
   
    234 
     UHP  6.05 % 
      7.09 % 
       1.2 px 
       1.3 px 
     100.00 % 
     0.02 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    R. Yang, X. Li, R. Cong and J. Du:  Unsupervised Hierarchical Iterative Tile 
Refinement Network with 3D Planar Segmentation 
Loss . IEEE Robotics and Automation Letters 2024. 
    
   
    235 
     AAFS  6.10 % 
      6.94 % 
       1.2 px 
       1.3 px 
     100.00 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    J. Chang, P. Chang and Y. Chen:  Attention-Aware Feature Aggregation for 
Real-time Stereo Matching on Edge Devices . Proceedings of the Asian Conference 
on Computer Vision 2020. 
    
   
    236 
     Toast2  6.16 % 
      7.42 % 
       1.2 px 
       1.4 px 
     95.39 % 
     0.03 s 
     4 cores @ 3.5 Ghz (C/C++) 
      
   
    B. Ranft and T. Strau\ss:  Modeling Arbitrarily Oriented Slanted 
Planes for Efficient Stereo Vision based on Block 
Matching . Intelligent Transportation Systems 
(ITSC), 2014 IEEE 17th International Conference 
on 2014. 
    
   
    237 
     ITGV  6.20 % 
      7.30 % 
       1.3 px 
       1.5 px 
     100.00 % 
     7 s 
     1 core @ 3.0 Ghz (Matlab + C/C++) 
      
   
    R. Ranftl, S. Gehrig, T. Pock and H. Bischof:  Pushing the Limits of Stereo Using Variational Stereo Estimation . IV 2012. 
    
   
    238 
     OASM-Net  6.39 % 
      8.60 % 
       1.3 px 
       2.0 px 
     100.00 % 
     0.73 s 
     GPU @ 2.5 Ghz (Python) 
      
   
    A. Li and Z. Yuan:  Occlusion Aware Stereo Matching via Cooperative Unsupervised Learning . Proceedings of the Asian Conference on Computer Vision, ACCV 2018. 
    
   
    239 
     Permutation Stereo  7.39 % 
      8.48 % 
       1.6 px 
       1.8 px 
     99.93 % 
     30 s 
     GPU @ 2.5 Ghz (Matlab) 
      
   
    P. Brousseau and S. Roy:  A Permutation Model for the Self-
Supervised Stereo Matching Problem . 2022 19th Conference on Robots and 
Vision (CRV) 2022. 
    
   
    240 
     OCV-SGBM code  7.64 % 
      9.13 % 
       1.8 px 
       2.0 px 
     86.50 % 
     1.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    H. Hirschmueller:  Stereo processing by semiglobal matching 
and mutual information . PAMI 2008. 
    
   
    241 
     SSMW  7.83 % 
      8.95 % 
       1.6 px 
       1.8 px 
     99.99 % 
     2.5 min 
     8 cores @ 2.5 Ghz (C/C++) 
      
   
    X. Li, J. Liu, G. Chen and H. Fu:  Efficient Methods Using Slanted 
Support Windows for Slanted Surfaces . IET Computer Vision, 
http://ietdl.org/t/5QsTxb 2016. 
    
   
    242 
     MSMW code  8.01 % 
      9.24 % 
       1.6 px 
       1.7 px 
     72.39 % 
     3 min 
     4 cores @ 2.5 Ghz (C/C++) 
      
   
    A. Buades and G. Facciolo:  On the performance of local methods for stereovision . 2013 submitted. 
    
   
    243 
     HSMA  8.15 % 
     10.33 % 
       1.9 px 
       2.9 px 
     100.00 % 
     44s 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    O. Zeglazi, M. Rziza, A. Amine and C. Demonceaux:  A hierarchical stereo matching 
algorithm 
based on adaptive support region aggregation 
method . Pattern Recognition Letters 2018. 
    
   
    244 
     ELAS code  8.24 % 
      9.96 % 
       1.4 px 
       1.6 px 
     94.55 % 
     0.3 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    A. Geiger, M. Roser and R. Urtasun:  Efficient Large-Scale Stereo Matching . ACCV 2010. 
    
   
    245 
     linBP  8.56 % 
     10.70 % 
       1.7 px 
       2.7 px 
     99.89 % 
     1.6 min 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    W. Khan, V. Suaste, D. Caudillo and R. Klette:  Belief Propagation Stereo Matching 
Compared to iSGM on Binocular or Trinocular Video 
Data . IV 2013. 
    
   
    246 
     ADSM  8.71 % 
     10.05 % 
       2.1 px 
       2.7 px 
     100.00 % 
     125 s 
     1 core @ 2.0 Ghz (C/C++) 
      
   
    O. Zeglazi, M. Rziza, A. Amine and C. Demonceaux:  Accurate dense stereo matching 
for road scenes . 2017 IEEE International 
Conference on Image Processing, ICIP 2017,
               Beijing, China, September 17-20, 
2017 . 
    
   
    247 
     Deep-Raw  8.93 % 
     11.07 % 
       3.9 px 
       4.9 px 
     100.00 % 
     1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    Z. Chen, X. Sun, Y. Yu, L. Wang and C. Huang:  A Deep Visual Correspondence 
Embedding Model for Stereo Matching Costs . ICCV 2015. 
    
   
    248 
     S+GF (Cen) code  9.03 % 
     11.21 % 
       2.1 px 
       3.4 px 
     100.00 % 
     140 s 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    K. Zhang, Y. Fang, D. Min, L. Sun, S. Yang, S. Yan and Q. Tian:  Cross-Scale Cost Aggregation 
for Stereo Matching . CVPR 2014. 
    
   
    249 
     CrossCensus  9.46 % 
     10.86 % 
       2.3 px 
       2.7 px 
     100.00 % 
     30 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    K. Zhang, J. Lu and G. Lafruit:  Cross-Based Local Stereo Matching Using 
Orthogonal Integral Images . Circuits and Systems for Video 
Technology, IEEE Transactions on 2009. 
    
   
    250 
     SymST-GP  9.79 % 
     11.66 % 
       2.5 px 
       3.3 px 
     100.00 % 
     0.254 s 
     Dual - Nvidia GTX Titan  (CUDA) 
      
   
    R. Ralha, G. Falcao, J. Amaro, V. Mota, M. Antunes, J. Barreto and U. Nunes:  Parallel refinement of slanted 3D 
reconstruction using dense stereo induced from 
symmetry . Journal of Real-Time Image 
Processing 2016. 
    
   
    251 
     SM_GPTM  9.79 % 
     11.38 % 
       2.1 px 
       2.6 px 
     100.00 % 
     6.5 s 
     2 cores @ 2.5 Ghz (C/C++) 
      
   
    C. Cigla and A. Alatan:  An Improved Stereo Matching Algorithm with Ground Plane
               and Temporal Smoothness Constraints . ECCV Workshops 2012. 
    
   
    252 
     LAMC-DSΜ  9.82 % 
     11.49 % 
       2.1 px 
       2.7 px 
     99.96 % 
     10.8 min 
     2 cores @ 2.5 Ghz (Matlab) 
      
   
    C. Stentoumis, L. Grammatikopoulos, I. Kalisperakis, E. Petsa and G. Karras:  A local adaptive approach for dense stereo matching in architectural scene reconstruction . ISPRS 2013. 
    
   
    253 
     IIW 10.78 % 
     12.62 % 
       3.3 px 
       4.3 px 
     70.85 % 
     5.5 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    A. Murarka and N. Einecke:  A meta-technique for increasing density of local stereo methods through iterative interpolation and warping . Canadian Conference on Computer and Robot Vision 2014. 
    
   
    254 
     SDM code 10.95 % 
     12.14 % 
       2.0 px 
       2.3 px 
     63.58 % 
     1 min 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    J. Kostkova:  Stratified dense matching for stereopsis 
in complex scenes . BMVC 2003. 
    
   
    255 
     HLSC_mesh 11.22 % 
     12.82 % 
       2.3 px 
       2.9 px 
     100.00 % 
     800 s 
     1 core @ 2.5 Ghz (Matlab + C/C++) 
      
   
    S. Hadfield, K. Lebeda and R. Bowden:  Stereo reconstruction using top-down 
cues . Computer Vision and Image 
Understanding 2016. 
    
   
    256 
     GF (Census) code 11.65 % 
     13.76 % 
       4.5 px 
       5.6 px 
     100.00 % 
     120 s 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    A. Hosni, C. Rhemann, M. Bleyer, C. Rother and M. Gelautz:  Fast Cost-Volume Filtering 
for Visual Correspondence and Beyond . TPAMI 2013. Cross-Scale Cost Aggregation 
for Stereo Matching . CVPR 2014. 
    
   
    257 
     BSM code 11.74 % 
     13.44 % 
       2.2 px 
       2.8 px 
     97.02 % 
     2.5 min 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    K. Zhang, J. Li, Y. Li, W. Hu, L. Sun and S. Yang:  Binary stereo matching . Pattern Recognition (ICPR), 2012 21st 
International Conference on 2012. 
    
   
    258 
     GCSF code 12.05 % 
     13.24 % 
       1.9 px 
       2.1 px 
     60.77 % 
     2.4 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    J. Cech, J. Sanchez-Riera and R. Horaud:  Scene Flow Estimation by Growing 
Correspondence Seeds . CVPR 2011. 
    
   
    259 
     OCV-BM-post code 12.28 % 
     13.76 % 
       2.1 px 
       2.3 px 
     47.11 % 
     0.1 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    G. Bradski:  The OpenCV Library . Dr. Dobb's Journal of Software Tools 2000. 
    
   
    260 
     GCS code 13.38 % 
     14.54 % 
       2.1 px 
       2.3 px 
     51.06 % 
     2.2 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    J. Cech and R. Sara:  Efficient Sampling of Disparity Space 
for Fast And Accurate Matching . BenCOS 2007. 
    
   
    261 
     GLDS code 17.22 % 
     18.63 % 
       2.8 px 
       3.2 px 
     100.00 % 
     26 s 
     GPU @ 1.5 Ghz (C/C++) 
      
   
    K. Oguri and Y. Shibata:  A new stereo formulation not using pixel and disparity 
models . 2018. 
    
   
    262 
     CostFilter code 19.99 % 
     21.08 % 
       5.0 px 
       5.4 px 
     100.00 % 
     4 min 
     1 core @ 2.5 Ghz (Matlab) 
      
   
    C. Rhemann, A. Hosni, M. Bleyer, C. Rother and M. Gelautz:  Fast Cost-Volume Filtering for Visual 
Correspondence and Beyond . CVPR 2011. 
    
   
    263 
     GC+occ code 33.49 % 
     34.73 % 
       8.6 px 
       9.2 px 
     87.57 % 
     6 min 
     1 core @ 2.5 Ghz (C/C++) 
      
   
    V. Kolmogorov and R. Zabih:  Computing Visual Correspondence with 
Occlusions using Graph Cuts . ICCV 2001. 
    
   
    264 
     VariableCros 34.84 % 
     36.11 % 
      12.4 px 
      12.9 px 
     95.66 % 
     30 s 
     1 core @ 2.5 Ghz (Matlab) 
      
   
    K. Zhang, J. Lu and G. Lafruit:  Cross-Based Local Stereo Matching Using 
Orthogonal Integral Images . Circuits and Systems for Video 
Technology, 
IEEE Transactions on 2009. 
    
   
    265 
     ALE-Stereo code 50.48 % 
     51.19 % 
      13.0 px 
      13.5 px 
     100.00 % 
     50 min 
     1 core @ 3.0 Ghz (C/C++) 
      
   
    L. Ladicky, P. Sturgess, C. Russell, S. Sengupta, Y. Bastanlar, W. Clocksin and P. Torr:  Joint Optimisation for Object Class 
Segmentation and Dense Stereo Reconstruction . BMVC 2010. 
    
   
    266 
     MEDIAN 52.61 % 
     53.67 % 
       7.7 px 
       8.2 px 
     99.95 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    267 
     AVERAGE 61.62 % 
     62.49 % 
       8.0 px 
       8.6 px 
     99.95 % 
     0.01 s 
     1 core @ 2.5 Ghz (C/C++) 
      
   
     
   
    268 
     EN 97.97 % 
     97.94 % 
      35.6 px 
      35.7 px 
     99.99 % 
     1.71 s 
     GPU @ 2.5 Ghz (Python)