Method

Unsupervised depth completion [VOICED]
https://github.com/alexklwong/unsupervised-depth-completion-visual-inertial-odometry

Submitted on 23 Mar. 2019 06:45 by
Xiaohan Fei (UCLA)

Running time:0.02 s
Environment:1 core @ 2.5 Ghz (C/C++)

Method Description:
We describe a method to infer dense depth from
camera motion and sparse depth as estimated
using a visual-inertial odometry system. Unlike
other scenarios using point clouds from lidar
or structured light sensors, we have few
hundreds to few thousand points, insufficient
to inform the topology of the scene. Our method
first constructs a piecewise planar scaffolding
of the scene, and then uses it to infer dense
depth using the image along with the sparse
points. We use a predictive cross-modal
criterion, akin to `self-supervision,'
measuring photometric consistency across time,
forward-backward pose consistency, and
geometric compatibility with the sparse point
cloud. We also launch the first visual-inertial
+ depth dataset, which we hope will foster
additional exploration into combining the
complementary strengths of visual and inertial
sensors. To compare our method to prior work,
we adopt the unsupervised KITTI depth
completion benchmark, and show state-of-the-art
performance on it.
Parameters:
TBD
Latex Bibtex:
@article{wong2020unsupervised,
title={Unsupervised Depth Completion from Visual
Inertial Odometry},
author={Alex Wong and Xiaohan Fei and Stephanie
Tsuei and Stefano Soatto},
journal={IEEE Robotics and Automation Letters},
year={2020}
}

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Sparsity Invariant CNNs (THREEDV 2017), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Sparsity Invariant CNNs (THREEDV 2017), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

iRMSE iMAE RMSE MAE
Error 3.56 1.20 1169.97 299.41
This table as LaTeX

Test Image 0

iRMSE iMAE RMSE MAE
Error 4.09 1.00 1439.84 280.55
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

iRMSE iMAE RMSE MAE
Error 5.67 1.21 1077.64 136.55
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

iRMSE iMAE RMSE MAE
Error 2.66 1.65 1714.51 565.27
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

iRMSE iMAE RMSE MAE
Error 4.76 1.85 810.14 287.23
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

iRMSE iMAE RMSE MAE
Error 3.68 1.73 686.60 258.02
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

iRMSE iMAE RMSE MAE
Error 5.06 1.29 1429.49 276.32
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

iRMSE iMAE RMSE MAE
Error 9.54 1.97 1472.23 281.62
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

iRMSE iMAE RMSE MAE
Error 5.60 1.68 1497.44 242.35
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

iRMSE iMAE RMSE MAE
Error 2.42 0.89 996.70 238.80
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

iRMSE iMAE RMSE MAE
Error 3.15 1.35 1711.51 377.55
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

iRMSE iMAE RMSE MAE
Error 2.10 1.42 1051.13 470.72
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

iRMSE iMAE RMSE MAE
Error 3.32 1.32 1698.08 526.55
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

iRMSE iMAE RMSE MAE
Error 8.30 2.42 1155.82 339.23
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

iRMSE iMAE RMSE MAE
Error 1.62 0.97 957.38 272.90
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

iRMSE iMAE RMSE MAE
Error 4.27 1.13 871.21 210.21
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

iRMSE iMAE RMSE MAE
Error 5.13 1.66 762.89 228.94
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

iRMSE iMAE RMSE MAE
Error 1.85 0.80 756.55 222.76
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

iRMSE iMAE RMSE MAE
Error 1.79 0.84 865.67 239.73
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

iRMSE iMAE RMSE MAE
Error 4.81 1.20 1121.03 348.89
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

iRMSE iMAE RMSE MAE
Error 3.78 1.08 1063.05 312.03
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker