Method

PENet [PENet]
https://github.com/JUGGHM/PENet_ICRA2021

Submitted on 1 Nov. 2020 08:04 by
Mu Hu (HKUST)

Running time:0.032s
Environment:GPU @ 2.5 Ghz (Python)

Method Description:
This paper proposes a two-branch backbone that
consists of a color-dominant branch and a depth-
dominant branch to exploit and fuse two
modalities thoroughly. More specifically, one
branch inputs a color image and a sparse depth
map to predict a dense depth map. The other
branch takes as inputs the sparse depth map and
the previously predicted depth map, and outputs
a dense depth map as well. The depth maps
predicted from two branches are complimentary to
each other and therefore they are adaptively
fused. In addition, we also propose a simple
geometric convolutional layer to encode 3D
geometric cues. The geometric encoded backbone
conducts the fusion of different modalities at
multiple stages, leading to good depth
completion results. We further implement a
dilated and accelerated CSPN++ to refine the
fused depth map efficiently.
Parameters:
TBD
Latex Bibtex:
@article{hu2020PENet,
title={PENet: Towards Precise and Efficient
Image
Guided Depth Completion},
author={Hu, Mu and Wang, Shuling and Li,
Bin
and Ning, Shiyu and Fan, Li and Gong, Xiaojin},
booktitle={ICRA},
year={2021}
}

Detailed Results

This page provides detailed results for the method(s) selected. For the first 20 test images, the percentage of erroneous pixels is depicted in the table. We use the error metric described in Sparsity Invariant CNNs (THREEDV 2017), which considers a pixel to be correctly estimated if the disparity or flow end-point error is <3px or <5% (for scene flow this criterion needs to be fulfilled for both disparity maps and the flow map). Underneath, the left input image, the estimated results and the error maps are shown (for disp_0/disp_1/flow/scene_flow, respectively). The error map uses the log-color scale described in Sparsity Invariant CNNs (THREEDV 2017), depicting correct estimates (<3px or <5% error) in blue and wrong estimates in red color tones. Dark regions in the error images denote the occluded pixels which fall outside the image boundaries. The false color maps of the results are scaled to the largest ground truth disparity values / flow magnitudes.

Test Set Average

iRMSE iMAE RMSE MAE
Error 2.17 0.94 730.08 210.55
This table as LaTeX

Test Image 0

iRMSE iMAE RMSE MAE
Error 3.71 0.79 771.17 167.82
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 1

iRMSE iMAE RMSE MAE
Error 2.79 0.88 731.23 89.55
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 2

iRMSE iMAE RMSE MAE
Error 2.08 1.44 1148.40 422.97
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 3

iRMSE iMAE RMSE MAE
Error 3.06 1.53 641.68 239.13
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 4

iRMSE iMAE RMSE MAE
Error 2.72 1.41 515.33 213.03
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 5

iRMSE iMAE RMSE MAE
Error 4.60 1.05 879.63 180.32
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 6

iRMSE iMAE RMSE MAE
Error 4.11 1.06 575.01 162.64
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 7

iRMSE iMAE RMSE MAE
Error 3.98 1.35 763.44 177.47
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 8

iRMSE iMAE RMSE MAE
Error 1.98 0.72 641.54 159.91
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 9

iRMSE iMAE RMSE MAE
Error 2.15 1.10 838.75 231.77
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 10

iRMSE iMAE RMSE MAE
Error 1.81 1.28 758.41 391.76
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 11

iRMSE iMAE RMSE MAE
Error 2.31 1.08 1147.99 396.52
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 12

iRMSE iMAE RMSE MAE
Error 3.97 1.61 999.58 247.09
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 13

iRMSE iMAE RMSE MAE
Error 1.23 0.76 672.82 187.48
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 14

iRMSE iMAE RMSE MAE
Error 1.51 0.80 595.11 142.91
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 15

iRMSE iMAE RMSE MAE
Error 3.39 1.30 494.58 165.62
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 16

iRMSE iMAE RMSE MAE
Error 1.27 0.68 583.02 176.67
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 17

iRMSE iMAE RMSE MAE
Error 1.33 0.66 571.51 167.78
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 18

iRMSE iMAE RMSE MAE
Error 1.62 0.81 668.68 238.81
This table as LaTeX

Input Image

D1 Result

D1 Error


Test Image 19

iRMSE iMAE RMSE MAE
Error 1.07 0.76 677.77 213.76
This table as LaTeX

Input Image

D1 Result

D1 Error




eXTReMe Tracker